

# ANNUAL SUMMARY PROGRESS REPORT CENTRAL COTTON RESEARCH INSTITUTE,

**MULTAN** 

2017-2018

Old Shuja Abad Road Multan-60500, Pakistan Web: www.ccrim.org.pk

FB: www.facebook.com/ccrim.pk

Phones :- +92-61-9200340-41 Fax :- +92-61-9200342

Email :- ccri.multan@yahoo.com

director@ccrim.org.pk

ISBN: 978-969-8590-17-1

## ANNUAL SUMMARY PROGRESS REPORT CENTRAL COTTON RESEARCH INSTITUTE

**MULTAN** 

2017-2018

#### **CONTENTS**

|      | EXECUTIVE SUMMARY                                                    | 1  |
|------|----------------------------------------------------------------------|----|
| l.   | INTRODUCTION                                                         | 6  |
| II.  | WEATHER AND COTTON CROP CONDITION                                    | 6  |
|      | 1. Weather                                                           | 6  |
|      | 2. Cotton Crop Situation                                             |    |
| III. | STAFF POSITION                                                       |    |
| IV.  | BUDGET                                                               |    |
| V.   | INCOME                                                               |    |
| VI.  | MAJOR ACCOMPLISHMENTS                                                |    |
|      | 1. AGRONOMY                                                          |    |
|      | 1.1 Effect of time of sowing on productivity of advanced genotypes   | 17 |
|      | 1.2 Effect of time of sowing on productivity of transgenic cotton    |    |
|      | 1.3 Yield response and nitrogen use efficiency of transgenic vs      |    |
|      | conventional cotton genotypes to nitrogen application                | 24 |
|      | 1.4 Cotton as relay cropping                                         |    |
|      | 1.5 Full season competitive ability of major weeds in cotton         |    |
|      | 1.6 Topping and branch removal impacts on growth and yield           |    |
|      | performance of cotton in various plant spacing                       | 28 |
|      | 1.7 Cost of production per acre cotton for 2016-17                   |    |
|      |                                                                      |    |
|      | 2. PLANT BREEDING AND GENETICS                                       |    |
|      | 2.1 Testing of New Strains                                           |    |
|      | 2.2 Coordinated Variety Testing Programme                            |    |
|      | 2.3 Testing of Commercial Varieties.                                 |    |
|      | 2.4 Breeding Material                                                |    |
|      | 2.5 Maintenace of Genetic Stock of World Cotton Collection           |    |
|      | 2.6 Pak US-ICARDA Cotton Project-1198-1 at CCRI Multan               | 53 |
|      | 2.7 Biotechnology Group                                              | 54 |
|      | 2.8 National Technology Testing Trial at CCRI Multan 2017-18         | 54 |
|      | 3. CYTOGENETICS                                                      |    |
|      | 3.1 Maintenance of Gossypium Germplasm                               |    |
|      | 3.2 Hybridization                                                    |    |
|      | 3.3 Chromosal studies                                                |    |
|      | 3.4 Performance of Filial Generations during 2017-18                 | 70 |
|      | 3.5 Search for Aneuploids / Haploids                                 |    |
|      | 3.6 Progeny Row Trial                                                |    |
|      | 3.7 Performance of New Cyto Strains                                  | 72 |
|      | 3.8 Varietal Trail                                                   | 74 |
|      | 4. ENTOMOLOGY                                                        |    |
|      | 4.1 Studies on Pink bollworm                                         | 76 |
|      | 4.2 Implications of Insecticides induced hormesis of insects         | 78 |
|      | 4.3 Monitoring of lepidopterous pests with sex pheromone traps       | 79 |
|      | 4.4 Monitoring of lepidopterous pests with light traps               | 81 |
|      | 4.5 National Coordinated Varietal Trial (NCVT)                       | 83 |
|      | 4.6 Host Plant Resistance studies of CCRI Strains                    | 90 |
|      | 4.7 Insecticide resistance monitoring in <i>Dysdercus koenigii</i>   | 95 |
|      | 5. PLANT PATHOLOGY                                                   |    |
|      | 5.1 Estimation of Cotton Diseases                                    | 96 |
|      | 5.2 Evaluation of National Technology Testing Trial against CLCuV    |    |
|      | 5.3 Evaluation of National Coordinated Varietal Trial (NCVT) strains |    |
|      | against different diseases                                           | 98 |
|      | 5.4 Epidemiological Studies on CLCuD                                 |    |

|       |      | 5.5        | Boll Rot of Cotton                                                                             |     |
|-------|------|------------|------------------------------------------------------------------------------------------------|-----|
|       |      | 5.6        | Wilt of Cotton                                                                                 | 107 |
|       | 6.   | ΡΙ ΔΝΤ     | PHYSIOLOGY / CHEMISTRY                                                                         |     |
|       | 0.   | 6.1        | Plant Nutrition                                                                                | 108 |
|       |      | 6.2        | Seed Physiology                                                                                |     |
|       |      | 6.3        | Soil-Plant-Water Relationships                                                                 | 114 |
|       |      | 6.4        |                                                                                                |     |
|       | 7.   | TDANCI     | FER OF TECHNOLOGY                                                                              |     |
|       | 7.   | 7.1        | Human resource development                                                                     | 122 |
|       |      | 7.1        | Meetings                                                                                       |     |
|       |      | 7.2        | Seminars                                                                                       |     |
|       |      | 7.4        | MoU between ICRA and PCCC                                                                      |     |
|       |      | 7.5        | Participation in Workshop/Conferences                                                          |     |
|       |      | 7.6        | Visitors                                                                                       |     |
|       |      | 7.7        | Facebook Page                                                                                  |     |
|       | •    |            | TEOLINOLOOV                                                                                    |     |
|       | 8.   |            | Technology                                                                                     | 101 |
|       |      | δ.1<br>9.2 | Testing of Lint Samples.  Effects of Cotton Leaf Curl Virus (CLCuD) Disease Incidence on Fibre | 134 |
|       |      | 0.2        | Characteristics of Two Cotton Varieties                                                        | 13/ |
|       |      | 83         | Effect of Different Moisture Content Levels on Fibre Characteristics                           | 134 |
|       |      | 0.0        | of Cotton                                                                                      | 138 |
|       |      | 8.4        |                                                                                                |     |
|       |      |            | province                                                                                       | 140 |
|       |      | 8.5        | Survey of spinning industry of Pakistan                                                        |     |
|       |      |            | ICA-Bremen Cotton Round Test Program                                                           |     |
|       | 0    | STATIS     | TICC                                                                                           |     |
|       | 9.   | 9.1        | Statistical Analysis                                                                           | 146 |
|       |      |            | Prices of Seed Cotton and its Components                                                       |     |
|       |      | 9.2        | rices of Seed Cotton and its Components                                                        | 140 |
| VII.  | RE   | COMME      | NDATIONS                                                                                       | 149 |
| VIII. | ום   |            | ONS                                                                                            | 151 |
| VIII. | PU   | IDLICATION | JIVO                                                                                           | 154 |
|       | ΑN   | INEXURE    | -I                                                                                             | 157 |
|       | ۸۸   | INIEYLIDE  | -II                                                                                            | 150 |
|       | \\I\ | INEVOVE    |                                                                                                | 100 |

\_\_\_\_\_

#### **Executive Summary**

Central Cotton Research Institute (CCRI), Multan is a premier mono crop multi-disciplinary institution at national level. The Institute has contributed significantly by advancing and generating knowledge in cotton research and development since its establishment in 1970. The current "Annual Summary Progress Report for the year 2017-18" is being published on its 48<sup>th</sup> year of establishment. Over the years, the institute has advanced by developing high yielding varieties with standard fibre quality characteristics viz., staple length, fineness and strength etc. The fine tuning of production technology at the grass-root level of common farming community to the progressive farmers has made tremendous impact in enhancing cotton productivity.

At the time of establishment of the Institute in 1970, the cotton productivity was 370 kg per hectare which has now risen to the level of 772 kg per hectare during the current year. The continued and untiring research endeavors of the scientists have yielded 26 cotton varieties (19 Non-Bt and 07 Bt). The introduction of efficient water use technologies i.e. bed-furrow sowing technique, identification of water stress & heat tolerant cotton varieties and other water saving techniques were advocated to the farmers to economize cotton production.

One Bt. cotton variety (Bt.CIM-632) and one conventional variety (CIM-610) of CCRI Multan will be approved for general cultivation in the 50<sup>th</sup> meeting of the Punjab Seed Council. The cotton varieties of CCRI Multan have gained substantial cotton acreage over the years in Sindh province as well. Keeping in view the liking of CCRIM varieties in Sindh province, cases for varieties for commercial cultivation were sent to the Sindh Seed Council and the first public sector cotton variety i.e., Bt.CIM-598 was approved for commercial cultivation in the Sindh province. Moreover, cases for Bt.CIM-602 and Bt. CIM-616 have also been floated for approval which is also expected to be approved in the coming Sindh Seed Council meeting. Moreover cases of 09 Bt. cotton varieties (Cyto-515, CIM-663, CIM-653, CIM-651, CIM-645, CIM-643, CIM-636, CIM-636, CIM-343) have been submitted in the 22<sup>nd</sup> meeting of the Technical Advisory Committee (TAC), of the National Biosafety Centre, Pakistan Environmental Protection Agency for biosafety clearance and testing under field conditions. All these varieties have high yield potential, excellent lint percentage and other fibre characteristics, desirable to the ginning and textile industry. It is hoped that these varieties will help to boost up the cotton productivity in the province.

Wilt Symptoms were noticed in some farmers' fields during month of August and November. The sudden death of affected plants occurred after appearance of syndrome. Upon examination, the pith wood, bark of lower part of stem was discolored. However, in some samples, the xylem vessels turned black and dried. This phenomenon was recorded in most of the cotton wilted plants identified causal organism was Botryodiplodia and fusarium spp. Fungicides viz., Trifloxystrobin, Azo-oxystrobin Carbendazim + Mencozib were observed effective against identified fungi in vivo.

In the field of plant protection, the invasion of secondary pests like mealybug, dusky cotton bug and red cotton bug have been potential threats to achieve yield targets. A due attention is being made to devise pest management strategies to tackle these emerging pests. In the scenario of extended Bt cotton cultivation, the research has been diverted towards this new dimension for controlling sucking pests and studies on resistance management accrued due to inbuilt bollworm resistance in cotton plant. Moreover, CCRI Multan in collaboration with Department of Pest Warning & Quality Control of Pesticides Punjab and the Department of Agriculture Extension Punjab, carried out extensive training programs for the Agriculture Officers and Field Staff at district level regarding "Off Season Management for Mealybug & Pink Bollworm" and to disseminate to the farmers through Agri Extension and PW&QC force.

The Institute has made tremendous efforts in popularizing the technology for herbicide use in weed management. The continuous research on screening of weedicides and fine tuning of their application techniques (pre- and post-emergence) is another milestone of this Institute. The quantification of optimized fertilizer levels, application methodologies for efficient utilization and exploring the alternate nutrient sources remained a continuous endeavor to achieve yield sustainability. The technique of plant mapping, disseminated from this Institute, for forecasting/ estimating yield potential is being practiced by the various research, academia and government departments.

The research activities / achievements of the Institute are enumerated as under:

#### **AGRONOMY**

The section mainly works for development of promising production technology to ensure better yield and profitability. The research carried out showed that planting of cotton in the second week of April is the best choice for achieving higher production. The delay in planting time results in the successive decrease in yield. Genotypes, CIM-620 and CIM-717 produced significantly higher yield over CIM-610. The research findings showed that planting of transgenic cotton on March 01 produced significantly higher yield as compared to other planting dates i.e. March 15, April 01, April 15, May 01 and May 15. Genotype *Bt*.Cyto-313 produced higher seed cotton yield as compared to *Bt*.CIM-343, *Bt*.Cyto-515, *Bt*.CIM-632 and *Bt*.CIM-602 (std). Application of 300 kg N ha<sup>-1</sup> gave non-significant increase in seed cotton yield over 225 kg N ha<sup>-1</sup>. The agronomic nitrogen use efficiency (ANUE) was highest at 75 kg nitrogen and decreased with higher doses.

The result revealed that cotton planting as relay crop (75 cm apart rows) produced maximum seed cotton yield (4283 kg ha<sup>-1</sup>) than fallow land early planting (3965 kg ha<sup>-1</sup>). Planting of cotton under modified technique (Relay crop 75 cm apart rows) produced 8.0%, 13.7% and 45.9% higher seed cotton yield over fallow land, wide row (150 cm) and after wheat harvesting, respectively.

The narrow plant spacing 15 cm produced 33.6% and 78.0% higher seed cotton yield over 30 and 45 cm spacing, respectively on account of high boll density. Whereas, branch removal practice did not prove an effective strategy for improving seed cotton yield at different plant spacing.

The maximum reduction in seed cotton yield was observed in plots where both narrow and broad leave weeds were left uncontrolled. The narrow leave weeds affected the crop more negatively than broad leave weeds. However, the competitive index as measured by yield loss per weed (m<sup>2</sup>) was the maximum in broad leave weeds followed by narrow and all weeds.

Daily weather data is also being maintained by the section. The cost of production for the year 2017-18 was Rs. 76268 ac<sup>-1</sup>.

#### **PLANT BREEDING & GENETICS**

The main focus of the scientists of Breeding and Genetics Section, CCRI, Multan is to evolve and commercialize *Bt.* and non-*Bt.* new cotton varieties with inbuilt resistance/tolerance against the biotic and abiotic stresses along with desirable fibre traits. Development of germplasm has a key role in the process of variety evolution. This section holds its own recognition in this aspect by maintaining & preserving 6030 accessions of the four species of Gossypium. Variety *Bt.*CIM-598 has been approved for general cultivation by Sindh Seed Council for general cultivation in Sindh Province Bt.CIM-632 and CIM-610 has completed its two year in NCVT and their cases were presented in 77<sup>th</sup> Expert Sub-committee held on 15<sup>th</sup> March 2018. *Bt.*CIM-663 and *Bt.*CIM-343 completed 1<sup>st</sup> year in NCVT. Thirty three advanced *Bt.* Strains were evaluated at Multan and Khanewal locations. Fifteen non-*Bt.* strains were also evaluated at Multan and Khanewal locations. All these strains have the desirable fibre characteristics. The crosses with exotic material Mac-07 and AS-0349 from France for induction of CLCuD resistant/tolerance are in different filial generations. Six research papers were published in National & International Journal.

#### **CYTOGENETICS**

The intent was to travel around the possibilities of transferring enviable genes of the wild species to the cultivated cotton for commercial exploitation. The research work of Cytogenetics Section encompasses maintenance of *Gossypium* germplasm; to develop promising varieties, through introgression, which are resistant/tolerant to biotic (diseases) and abiotic (drought, heat) stresses with special hub on Burewala Strain of cotton leaf curl virus (CLCuD). Cytological studies of a newly developed inter-specific hybrid were undertaken. The breeding material developed through multiple species hybridization viz [ $\{2(G.hirs.xG.anom.) \times {}^{3}G.hirs.\}$ ] x  $\{2(G.arbo.xG.anom.) \times {}^{2}G.hirs.\}$ ] x  $\{3$ 0.  $\{4$ 1.  $\{4$ 2.  $\{4\}3$ 3.  $\{4$ 3.  $\{4\}4$ 4.  $\{4\}4$ 5.  $\{4\}4$ 5.  $\{4\}4$ 5.  $\{4\}4$ 5.  $\{4\}4$ 5.  $\{4\}4$ 5.  $\{4\}4$ 5.  $\{4\}4$ 5.  $\{4\}4$ 5.  $\{4\}4$ 5.  $\{4\}4$ 5.  $\{4\}4$ 5.  $\{4\}4$ 5.  $\{4\}4$ 5.  $\{4\}4$ 5.  $\{4\}4$ 5.  $\{4\}4$ 5.  $\{4\}4$ 5.  $\{4\}4$ 5.  $\{4\}4$ 5.  $\{4\}4$ 5.  $\{4\}4$ 5.  $\{4\}4$ 5.  $\{4\}4$ 5.  $\{4\}4$ 5.  $\{4\}4$ 5.  $\{4\}4$ 5.  $\{4\}4$ 5.  $\{4\}4$ 5.  $\{4\}4$ 5.  $\{4\}4$ 5.  $\{4\}4$ 5.  $\{4\}4$ 5.  $\{4\}4$ 5.  $\{4\}4$ 5.  $\{4\}4$ 5.  $\{4\}4$ 5.  $\{4\}4$ 5.  $\{4\}4$ 5.  $\{4\}4$ 5.  $\{4\}4$ 6.

Different shades of brown cotton with petal spot were observed in  $F_2$ ,  $F_3$  &  $F_4$ . All these shades have suitable fibre length. Search for aneuploids especially haploids remained in steps forward. Cyto material developed through multiple species hybridization was tested in progeny row trials, micro and varietal trials, zonval varietal trial (ZVT) and National Coordinated Varietal Trial (NCVT) to observe their economic and fibre characteristics.

Three *Bt.* varieties viz., Cyto-177, Cyto178, Cyto-179 was approved from Punjab seed council during 2017 and the cases of Bt.Cyto-313 and Bt.Cyto-515 varieties have been submitted to National Biosafety Committee for the approval of their commercialization. *Bt.* Cyto-313 was tested in NCVT trial during 2017-18.

#### **ENTOMOLOGY**

Plant protection measures are prerequisite for successful commercial cotton cultivation under varied agronomic practices and agro-climatic regions across cotton belt. Distinctive research work carried out on various aspects such as evaluating the impact of sowing date on the development of pink bollworm, surveys of cotton growing areas for pink bollworm infestation, assessing impact of first spray on rest of the pest management, monitoring of lepidopterous pests with sex pheromone and light traps, host plant tolerance of CCRI, Multan strains, National Coordinated Varietal Trials on *Bt.*& non-*Bt.* strains, monitoring of insecticide resistance in cotton pests.

The section participated in training programmes, organized by the Institute for the farmers and staff of the Agriculture Extension & Pest Warning & Quality Control (PW&QC) Department. Section also provided internship facilities` to different Universities. Scientists also recorded IPM related programmes in electronic media.

#### **PLANT PATHOLOGY**

A survey was conducted during cotton cropping season to record the prevalence of cotton leaf curl (CLCuV) disease in different parts of the Punjab. The incidence of cotton leaf curl disease (CLCuD) was maximum in areas of, Khanewal, Burewala Vehari, and minimum in cotton areas of Multan Shujabad Depal Pur, Lodhran, Kehror Pakka, Kabirwala, Layyah Sahiwal, and Arif Wala. There was no incidence of CLCuD in the areas of Muzzafargarh, Bahawal Pur, Bahawal, Nager Haroon Abad, and Jam Pur. Overall position of CLCuD with crop cultivation period from March to June indicates that the crop cultivated from the month of March to May showed minimums disease incidence and severity level whereas crops cultivated during the month of June showed maximum level of disease incidence and severity. The incidence of boll rot varied from 1 to 2 percent. Boll rot due to secondary pathogens was observed only on a few spots. The occurrence of stunting phenomenon was very low. The prevalence of bacterial blight and leaf spot of cotton was minimal. Blackening of leaves was observed in all spots Wilt Symptoms are noticed in some fields wilt disease was observed in fields at CCRI during the month of August and November. The sudden death of affected plants occurred after appearance of syndrome. Upon examination, the pith wood, bark of lower part of stem was discolored. However, in some samples, the xylem vessels turned black and dried. On isolation and microscopic studies revealed fungus Botryodiplodia sp. was infested the internal stem portion whereas another fungus Fusarium oxysporum is also identified from the infected roots of cotton plants.

#### PLANT PHYSIOLOGY / CHEMISTRY

Maintaining soil health is the basic step to ensure profitable and sustainable cotton production. Organic matter content in a soil determines its health status as it promotes microbial activity, water conservation and efficient supply of applied nutrients and water to the plant. Nutrient replenishment in quantities equal to those removed from soil, by previous cop or otherwise, will maintain soil fertility. Integrated nutrient management and judicial use of fertilizers ensure higher yields of the farmland in a cost effective manner. However, the use of fertilizers in cotton crop is neither judicial nor balanced. Development of multiple nutrient deficiencies, of various egrees, are the result of continuous mining without adequate nutrient replenishment. Cotton crop is mainly fertilized with nitrogenous and to some extent with phosphatic fertilizers whereas the use of potassium fertilizers is very minimal. Moreover, magnesium is an essential

secondary macronutrient but it is neither applied nor recommended for cotton crop. In spite of the fact that magnesium stimulates enzyme production required for nutritional balance in soil while involved in chlorophyll formation, protein synthesis, photosynthesis, partitioning and utilization of photo-assimilates within the plan. The deficiency of magnesium leads to interveinal chlorosis of older leaves, impairment to plant growth and yield reduction through adversely affecting critical physiological and biochemical processes in plants. The studies were conducted on Magnesium nutrition of cotton to evaluate its comparative efficacy by applying through fertigation and foliar methods. Foliar applied Mg produced better yield than the Mg application through fertigation.

Biotic and abiotic stresses have adverse effects on production and seed quality of cotton crop. High temperatures in the cotton zones negatively impact the yield performance of cotton genotypes. Genetic variability and identification of stress tolerant material help in mitigating the adverse effects of temperature. Out of 35 genotypes studied, GH-Hadi, Cyto-313 and BH-221 surpassed in yield performance and heat tolerant traits. Amino acids like proline is known to induce abiotic stress tolerance by strengthening the cellular walls in such a way that they attain resistance to unfavorable climatic conditions. The studies carried out by the section revealed that both seed priming and subsequent foliar sprays of 0.1% proline along with B & Zn micronutrients provided advantage in terms of yield and seed quality parameters over other doses. Squeezing irrigation water resources warrant development and identification of drought tolerant cotton varieties on regular basis. A total of 36 varieties were tested under normal irrigation and artificially imposed water stress conditions in the field. The genotypes CIM-343 and FH-Lalazar showed better drought tolerance characteristics by producing higher seed cotton yield.

#### TRANSFER OF TECHNOLOGY

Transfer of Technology Section played a significant role in the dissemination of latest research practices/findings for profitable cotton production technology to all private and public sectors. The research findings are disseminated with the usage of electronic and print media during the cropping season and also in the off-season. Training/refresher courses were conducted for knowledge enhancement and skill development farmers and field officers of pesticide/seed industry. Cotton Crop Management Group (CCMG) Meetings were regularly held at the institute that helped in reviewing cotton crop situation and the devise of measures which should be adopted at gross root level through the intervention of Agriculture Department. A large number of printed materials were distributed among the extension workers, farmers and visitors of the institute during the season. Furthermore, a number of programs for general awareness/skill development in cotton production were taken up through Radio & TV programs.

#### FIBRE TECHNOLOGY

The contribution of this section in determination of quality traits of genetic material for development of new varieties is up to the mark. About 102,485 lint samples for fibre length, fibre strength, micronaire and color grade were tested during the year. Apart from lab work, research studies on evaluating the effect of CLCuD and different moisture levels on fibre quality were also carried out. To strengthen the liaison with textile industry and bring together field picture for mutual interest, quality survey was conducted for analyzing the quality in ginning factories of Punjab and Spinning mills were visited for data collection regarding cotton fibre utilization and economic comparatives. Every year participation in International Cotton Check Test Program with Faser Institute, Germany prove the thorough standardization of the laboratory.

#### **STATISTICS**

Statistics section helps other sections in designing layout of experiments and analysis of the research data. Experimental data of sub-stations like Cotton Research Stations D.I.Khan and Bahawalpur were analyzed. National coordinated varietal trial (NCVT) data were statistically analyzed for Director Research, PCCC. Daily market rates of cotton commodities are documented.

The generous financial support provided by the Pakistan Central Cotton Committee (PCCC) and Ministry of Commerce & Textile (Textile Division) are gratefully acknowledged and also the financial contribution through "Pak-US Cotton Productivity Enhancement Project" by ICARDA, for the development of CLCuV resistant varieties.

The Institute highly commends the technical assistance of the International Cotton Advisory Committee (ICAC), Washington, DC, USA in regular inflow of technical information and assistance in attending the international cotton conferences and workshops. The Institute appreciates the cooperation extended by the Department of Agriculture, Government of the Punjab in making the research program a success. The facilities provided by the Punjab Seed Corporation (PSC), Lahore for conducting research trials at PSC Farm, Khanewal are highly appreciated. The Institute also acknowledges the facilities provided by the progressive farmers for conducting field experiments at their farms. The Institute also thanks the fertilizer, pesticide and seed industry and other organizations that extended their cooperation in the research/technology transfer activities of the Institute.

I am appreciative of all those who have contributed towards achieving the assigned targets in cotton research and development.

Dr. Zahid Mahmood
Director
Central Cotton Research Institute
Multan

March, 2018

#### ANNUAL PROGRESS REPORT OF CENTRAL COTTON RESEARCH INSTITUTE, MULTAN FOR THE YEAR 2017-18

#### I. INTRODUCTION

Since its establishment in 1970 by the Pakistan Central Cotton Committee, the Central Cotton Research Institute has been endeavoring to conduct fundamental research on cotton. The Institute initially started its activities with five disciplines viz. Cytogenetics, Entomology, Plant Pathology, Plant Physiology/ Chemistry and Statistics. The Institute expanded its research horizon to cover applied research with special focus to address the issues faced by cotton farming community regarding production technology and to enhance cotton production through evolving high yielding varieties with desirable fibre parameters. To achive this mandate, new sections such as Plant Breeding and Genetics (1973), Agronomy (1975), Fibre Technology (1976) and Transfer of Technology (1983) were set up in a period of one decade. The Institute has also been recognized as "Centre of Excellence" in Asia Region by the Organization of Islamic Conference (OIC). Presently nine disciplines are working at the Institute in a coordinated manner. The work was focused on the following main objectives:

- 1. Study the cotton plant from botanical, genetical, production, physiological, chemical, entomological, pathological and other relevant facets in a coordinated manner.
- 2. Undertake research work of national importance, handle problems of inter-regional nature.
- 3. To develop cost-effective cotton production technology.
- 4. Advance knowledge on the cotton plant responses to environment with a view to better cope with the adverse impacts in the changing climate scenario.
- 5. Provide education and training on cotton production technology to the agriculture research, extension, teaching staff and other stakeholders.
- 6. Identify problems of cotton growers and advocate remedial measures.
- 7. Transfer production technology to the cotton growers.
- 8. Educate and motivate cotton growers and monitor research outcomes.
- 9. Provide technical support to the Pakistan Central Cotton Committee in coordinating and developing a national programme for cotton research and development.
- 10. Training manpower across the country and other cotton growing countries on "cotton research and development".
- 11. Facilitation and research guidance to students at graduate and higher level degree courses.

#### II. WEATHER AND COTTON CROP CONDITION

#### 1. Weather

The pattern of maximum temperatures during cotton crop season 2017-18 remained lower during May-June while minimum temperature remained parrel to that of last year. The annual average maximum temperature during 2017-18 remained 32.52°C while it was 32.56°C during last year. Similarly the annual average minimum temperature during current year remained at 22.4°C while it was 22.5°C during last year. The average relative humidity remained 78.0% during current season while it was 77.9% during last season. A total of 139 mm rainfall was recorded during the crop season (Apr-Dec) of 2017 as compared to 168.8 mm rainfall during the last year.

The meteorological data for the year 2017 vis-à-vis 2016 recorded at Central Cotton Research Institute, Multan are illustrated in Fig. 1 and Appendix-I.The comparative maximum/minimum temperatures, relative humidity, rainfall for the year 2017 and 2016 are given in Appendix-I.

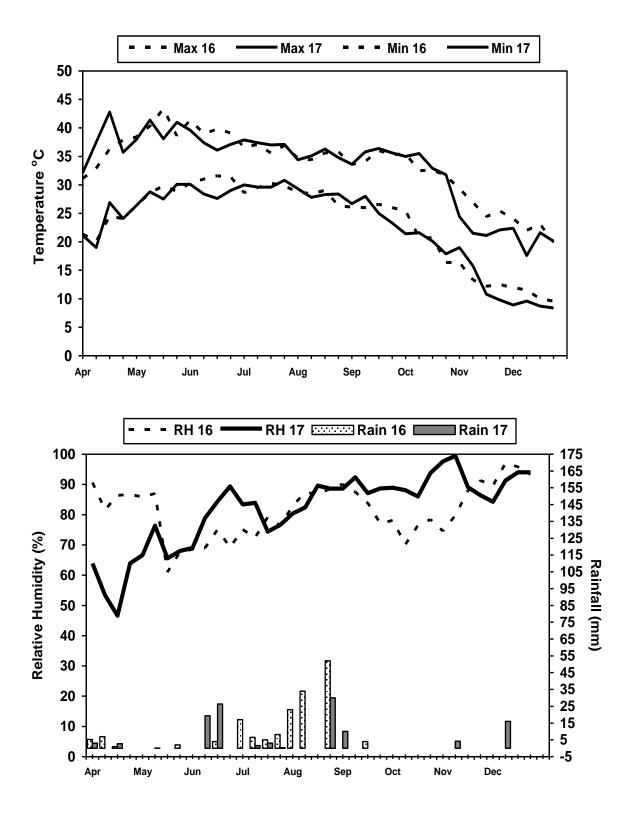



Fig. 1 Weekly Average Temperature, Relative Humidity and Total Rainfall during 2016 and 2017.

#### 2. **Cotton Crop Situation**

#### 2.1 **Cotton Sowing**

In the meeting of Federal Committee on Cotton held under the chairmanship of Secretary, Textile Division, Ministry of Commerce & Textile, Islamabad, fixed the cotton sowing targets of 6.0 Million acres for Punjab with production estimates of 10.0 million bales. But sowing was done on 5.306 million acres, which remained 11.57% less than the proposed target and 18.28% more than the previous year as reported by Director General Agriculture (Ext.) in the meeting of Cotton Crop Management Group (CCMG) held on 07.10.2017. The major increase in cotton sowing was witnessed in Vehari, DG Khan, Khanewal, Pak Pattan, Faisalabad, T.T. Singh, and Chiniot. The overall cotton crop size in the province was estimated at 8.8 million bales by the Cotton Crop Assessment Committee (CCAC) meeting held on 02.11.2017. The detail is as under:

(000 acres)

| Duniah Aras    | Targets | Area    | sown    | %age of the | %age (+/-) over |
|----------------|---------|---------|---------|-------------|-----------------|
| Punjab Area    | 2017    | 2017    | 2016    | Target      | last year       |
| Core Areas     | 4938.95 | 4567.00 | 3841.00 | 92.47       | + 18.90         |
| Non-Core Areas | 763.13  | 527.00  | 418.00  | 69.09       | + 26.08         |
| Marginal Areas | 297.92  | 212.00  | 227.00  | 71.16       | -6.61           |
| PUNJAB         | 6000.00 | 5306.00 | 4486.00 | 88.43       | +18.28          |

Source: CCMG 07.10.2017

The district / division-wise cotton area sown during 2017-18 and 2016-17, as recorded by Crop Reporting Service Department, Government of the Punjab, Lahore, remained as under:-

(Area in 000 acres)

| Divisions/Districts | 2017-2018 | 2016-2017 |
|---------------------|-----------|-----------|
| Rawalpindi Division | 1         | 1         |
| Attock              |           |           |
| Rawalpindi          |           |           |
| Islamabad           |           |           |
| Jehlum              | 1         | 1         |
| Chakwal             |           |           |
| Sargodha Division   | 181       | 211       |
| Sargodha            | 12        | 13        |
| Khushab             | 5         | 6         |
| Mianwali            | 106       | 119       |
| Bhakkar             | 58        | 73        |
| Faisalabad Division | 185       | 178       |
| Faisalabad          | 55        | 46        |
| T.T. Singh          | 72        | 60        |
| Jhang               | 54        | 68        |
| Chiniot             | 4         | 4         |
| Gujranwala Division | 2         | 2         |
| Gujrat              |           |           |
| M.B.Din             | 2         | 2         |
| Sialkot             |           |           |
| Narowal             |           |           |
| Gujranwala          |           |           |
| Hafizabad           |           |           |
| Lahore Division     | 14        | 15        |
| Sheikhupura         | 1         | 1         |
| Nankana Sahib       | 1         | 1         |
| Lahore              |           |           |
| Kasur               | 12        | 13        |

| Sahiwal Division    | 250  | 238  |
|---------------------|------|------|
| Okara               | 25   | 41   |
| Sahiwal             | 160  | 138  |
| Pakpattan           | 65   | 59   |
| Multan Division     | 1803 | 1359 |
| Multan              | 389  | 349  |
| Lodhran             | 467  | 373  |
| Khanewal            | 472  | 351  |
| Vehari              | 475  | 286  |
| D.G.KhanDivision    | 1023 | 956  |
| Muzzafargargh       | 346  | 336  |
| Layyah              | 122  | 106  |
| D.G. Khan           | 223  | 180  |
| RajanPur            | 332  | 334  |
| Bahawalpur Division | 1643 | 1526 |
| Bahawalpur          | 660  | 598  |
| R.Y. Khan           | 389  | 419  |
| Bahawalnagar        | 594  | 509  |
| Punjab              | 5102 | 4486 |

#### 2.2 Supply of Inputs

Irrigation water supply shortage prevailed through out the cropping season like during previous year and cotton sowing was also delayed in some areas due to delayed canal water availability. The availability of nitrogenous and phophatic fertilizers remained satisfactory and no shortage was reported.

The availability of cotton pest-specific pesticides remained satisfactory during the season. However, flareup of whitefly, jassid and pink bollworm in some areas limited the achieveable yield potential.

#### Pesticide Availability for Kharif 2017

|                                | Carry<br>over as<br>on<br>31.12.16<br>(KG/L) | Planned<br>Import<br>forn2017<br>(kg/L) | Total<br>expected<br>availability<br>for 2017 | Actual<br>sold,<br>during<br>2012<br>(Kg/L) | Actual<br>Imports<br>upto<br>15/4/2017 |           | Area to be<br>treated<br>with actual<br>availability<br>(acres) | Area to be<br>treated with<br>expected<br>availability<br>2017 (acres) |
|--------------------------------|----------------------------------------------|-----------------------------------------|-----------------------------------------------|---------------------------------------------|----------------------------------------|-----------|-----------------------------------------------------------------|------------------------------------------------------------------------|
| 1                              | 2                                            | 3                                       | 4                                             | 5                                           | 6                                      | 7         | 9                                                               | 10                                                                     |
| Heliothis Specific (+armyworm) | 224,155                                      | 1,806,912                               | 2,031,067                                     | 1,804,317                                   | 400,800                                | 624,955   | 326,888                                                         | 3,495,653                                                              |
| Whitefly Specific              | 516,664                                      | 660,275                                 | 1,176,939                                     | 801,590                                     | ,<br>-                                 | 592,614   | 3,189,197                                                       | 5,058,005                                                              |
| Mealy Bug Specific             | 1,849                                        | 88,800                                  | 90,649                                        | 51,445                                      | 88,800                                 | 90,649    |                                                                 | 181,298                                                                |
| Armyworm Specific              | 61,025                                       | 266,765                                 | 327,789                                       | 237,902                                     | 88,235                                 | 149,260   | 700,406                                                         | 1,381,020                                                              |
| PBW/SBW Specific               | 479,579                                      | 594,450                                 | 1,074,030                                     | 860,144                                     | 4,000                                  | 483,579   | 727,145                                                         | 3,809,342                                                              |
| Other Sucking                  | 453,949                                      | 199,505                                 | 653,453                                       | 430,779                                     | 85,850                                 | 539,799   | 2,714,876                                                       | 4,708,616                                                              |
| Miticides / Acaricides         | 122,472                                      | 157,234                                 | 279,706                                       | 210,858                                     | 3,010                                  | 125,482   | 30,100                                                          | 583,492                                                                |
| Weedicides                     | 152,087                                      | -                                       | 1,138,087                                     | 927,375                                     | 523,234                                | 675,321   | 761,153                                                         | 1,313,415                                                              |
| Grand Total                    | 2,011,779                                    | 3,773,941                               | 6,771,720                                     | 5,324,410                                   | 1,193,930                              | 3,281,660 | 8,449,764                                                       | 20,530,842                                                             |

Source: Crop Life Pakistan

#### 2.3 Cotton Pests and Disease Situation

The Director General, Pest Warning & Quality Control of Pesticides Punjab reported the cotton insect pests and disease situation in the province which described that the hot spots of Jassid (9.61%), Whitefly (12.04%), CLCuV (14.88%), Mealybug (8.50%), Armyworm (3.32%), and Thrips (2.79%) were observed. More incidence level of Whitefly was observed in Bahawalpur, Lodhran, Multan, Sargodha, and Sahiwal district. Moreover, hotspots of American bollworm were also observed on Bt varieties (0.01%) and non-Bt varieties (0.07%). Spots of PBW were witnessed in Mianwali and Rahim Yar Khan districts. The pheromone trap catches data for Pink

Bollworm moths. Higher incidence of CLCuV was observed in Vehari, Multan, Khanewal, Sahiwal, T.T. Singh, Lodhran and Jhang areas.. The overall summary of cotton insect pests and disease position as compared to previous year is given below:

| Sr. No. | Pests & Diseases    | 2017 | 2016  | 2015  |
|---------|---------------------|------|-------|-------|
| 1.      | Whitefly            | 4.10 | 4.97  | 4.38  |
| 2.      | Jassid              | 3.79 | 1.70  | 4.38  |
| 3.      | Thrips              | 0.00 | 0.00  | 0.00  |
| 4.      | Mealy Bug           | 7.14 | 9.83  | 7.06  |
| 5.      | Mites               | 0.00 | 0.00  | 0.10  |
| 6.      | Dusky Cotton Bug    | 2.08 | 2.62  | 0.54  |
| 8.      | Pink Boll Worm      | 7.36 | 11.83 | 7.06  |
| 9.      | Army Worm           | 0.28 | 1.35  | 2.24  |
| 10.     | CLCuV (% Incidence) | 6.6  | 7.21  | 10.37 |

Source: PWQC, Punjab

#### 2.4 Cotton Plant Mapping

Plant growth and developed upto 15.10.2017 was reported as under:

| Major Yield Component       | 2017-18 | 2016-17 | 2015-16 | % Change |
|-----------------------------|---------|---------|---------|----------|
| Plants / Acre               | 15086   | 13811   | 13439   | 2.77     |
| Av. Plant Height(cm)        | 109.02  | 120.9   | 114.4   | 5.68     |
| Av. Squares                 | 3.53    | 3.01    | 3.71    | -18.9    |
| Av. Flowers                 | 0.40    | 0.39    | 0.38    | 2.63     |
| Bolls /Plant                | 18.7    | 18.4    | 14.9    | 23.5     |
| Av. Irrigations             | 10.68   | 10.5    | 8.92    | 17.7     |
| Av. Sprays                  | 6.41    | 6.21    | 5.54    | 12.1     |
| Fruit Damaged By Insects:   |         |         |         |          |
| Rotten Bolls Av.            |         | 0.06    | 0.13    | -53.8    |
| CLCV % Av.                  |         | 0.33    | 1.59    | -79.2    |
| Bolls Damaged Av.           |         | 0.21    | 0.29    | -27.6    |
| Av.use of Fertilizer in kgs |         |         |         |          |
| Nitrogen                    | 50.71   | 47.0    | 42.9    | 9.56     |
| Phosphate                   | 16.35   | 14.4    | 12.3    | 17.1     |

Source: Director, Crop Reporting Service Punjab

#### 2.5 Cotton Market Situation

#### 2.5.1 Cotton Prices

The market prices of seedcotton on overall season basis remained at Rs.2710~3157 per 40 kgs during theyear and the trend of lint prices remained at Rs.6886~7397 per 40 kgs during the year which were higher than the year 2016-17 during the month of October-December.

| Month   | 2017-18 | 2016-17 | 2015-16 |
|---------|---------|---------|---------|
| Jan     | 6886    | 6872    | 5758    |
| Feb     | 7154    | 7149    | 5756    |
| Mar     | 7244    | 7245    | 5616    |
| Apr     | 7215    | 7216    | 5785    |
| May     | 7239    | 7227    | 5986    |
| Jun     | 7201    | 7196    | 5993    |
| Jul     | 6663    | 7086    | 6558    |
| Aug     | 7082    | 7100    | 4880    |
| Sep     | 6472    | 6505    | 4991    |
| Oct     | 6583    | 6410    | 5582    |
| Nov     | 6945    | 6469    | 5698    |
| Dec     | 7397    | 6712    | 5607    |
| Average | 7007    | 6932    | 5684    |

#### 2.5.2 Cotton Arrival Position

The cotton arrival position into ginning factories upto 3<sup>rd</sup> March 2018 reached at 11.524 million bales of cotton showing 7.63 % higher arrivals compared to 10.707 million bales during the corresponding period of last season, according to the latest fortnightly report on cotton arrivals, released by Pakistan Cotton Ginners' Association (PCGA).

| Province | 2017-18    | 2016-17    | % Change |
|----------|------------|------------|----------|
| Punjab   | 7,271,323  | 6,920,370  | + 5.07   |
| Sindh    | 4,253,258  | 3,786,811  | + 12.32  |
| PAKISTAN | 11,524,581 | 10,707,181 | + 7.63   |

Source: Pakistan Cotton Ginners Association

#### III. STAFF POSITION

A total of 131 staff members including 34 officers and 97 other staff members remained at the Institute during the period under report. The position of technical staff during the year 2017-18 is given in **Appendix-II**.

#### IV. BUDGET

The sanctioned budget from the year 2016-17 to 2017-18 is given below:

(Rs. Million)

| Sr. # | Detail              | 2016-17 | 2017-18 |
|-------|---------------------|---------|---------|
| 1.    | Pay & Allowances    | 67.622  | 61.860  |
| 2.    | Medical             | 3.413   | 2.930   |
| 3.    | Traveling Allowance | 1.500   | 1.800   |
| 4.    | Group Insurance     | 0.795   | 0.617   |
| 5.    | Utility Bills*      | 7.060   | 7.160   |
| 6.    | Contingencies       | 25.485  | 48.200  |
|       | Total               | 105.875 | 122.567 |

<sup>\*</sup> Include Electricity, Gas, WASA, Phone, Internet, and electricity charges for new building

#### V. INCOME

The income of the Institute from the year 2016-17 to 2017-18 is given below:

(Rs. Million)

| Sr. # | Head             | 2016-17 | 2017-18 |
|-------|------------------|---------|---------|
| 1.    | Farm Produce     | 3.381   | 4.000   |
| 2.    | Non-Farm Produce | 1.161   | 1.200   |
|       | Total            | 4.548   | 5.200   |

<sup>\*</sup> Period from 1<sup>st</sup> July to 29<sup>th</sup> February

#### VI. MAJOR ACCOMPLISHMENTS

#### a) <u>Varietal Development</u>

The 22<sup>nd</sup> meeting of the Technical Advisory Committee (TAC), of the National Biosafety Centre, Pakistan Environmental Protection Agency was held at Islamabad on 30<sup>th</sup> January, 2018 under the chairmanship of Mrs Farzana Altaf Shah, Director General, Pakistan Environmental Protection Agency, Islamabad. Cases of 46 transgenic varieties of various crops were presented in the meeting from the public and private sector institutions for biosafety clearance and testing under field conditions. Dr. Zahid Mahmood, Director CCRI Multan presented cases of the following 09 promising upcoming Bt cotton varieties developed by CCRI Multan and 05 Bt cotton varieties developed by Cotton Research Station, Ghotki for conducting field trials.

| Sr. | Name of variety | GOT    | Staple Length | Micronaire | Fibre    |
|-----|-----------------|--------|---------------|------------|----------|
| No. |                 | (%age) | (mm)          | Value      | Strength |
| 1.  | Cyto-515        | 39.1   | 28.0          | 4.7        | 29.2     |
| 2.  | CIM-663         | 38.6   | 28.4          | 4.7        | 27.4     |
| 3.  | CIM-653         | 39.0   | 28.5          | 4.5        | 27.7     |
| 4.  | CIM-651         | 37.6   | 29.2          | 4.9        | 28.6     |
| 5.  | CIM-645         | 39.2   | 28.8          | 4.2        | 30.6     |
| 6.  | CIM-643         | 39.4   | 28.2          | 4.8        | 31.0     |
| 7.  | CIM-642         | 38.4   | 29.0          | 4.2        | 30.2     |
| 8.  | CIM-636         | 38.9   | 28.7          | 4.2        | 29.5     |
| 9.  | CIM-343         | 38.5   | 29.0          | 4.6        | 27.5     |

Dr. Zahid Mahmood, Director CCRI Multan presented background development phases and performance of these varieties. He stated that these varieties are bollworm resistant, early maturing, possess high yield potential, better fibre characteristics. It is hoped that approval and release of these varieties for commercial cultivation will significantly contribute to the over-all cotton production. He further stated that these varieties will be included in the National Coordinated Varietal Trial 2018, after grant of permission for the field trials, for their testing under various ecological zones. The commission, after reviewing performance of varieties and high level of resistance against bollworms, granted permission for conducting field trials of these varieties.

#### b) Approval of Projects for Cotton Research and Development

"A Comprehensive Integrated Scientific Approach for the Development of Sustainable Management Strategies of Pink Bollworm (*Pectinophora gossypiella*)": This is a collaborative project involving Central Cotton Research Institute, Multan; University of Agriculture Faisalabad; Entomological Research Institute, Ayub Agricultural Research Institute Faisalabad; Muhammad Nawaz Sharif University of Agriculture Multan; and National Institute for Biotechnology & Genetic Engineering Faisalabad. Moreover, the Agriculture Extension Department and the Department of Pest Warning & Quality of Pesticides Punjab will also be engaged in the project. The project will encompass management of Pink boll worm through integrated pest management, molecular approaches and development of resistant cotton germplasm. The project is funded by the Punjab Agricultural Research Board (PARB) and the project period spans over three years duration starting from October 2017.

"Management of Whitefly by Integrated Strategies and Development of Resistant Cotton Germplasm through Genetic Engineering": This is also a collaborative project involving Central Cotton Research Institute, Multan; Department of Entomology, University of Agriculture Faisalabad; Entomological Research Institute, Ayub Agricultural Research Institute Faisalabad; Muhammad Nawaz Sharif University of Agriculture Multan; Cotton Research Institute (Government of the Punjab) Multan and National Institute for Biotechnology & Genetic Engineering Faisalabad. Moreover, the Agriculture Extension Department and the Department of Pest Warning & Quality of Pesticides Punjab will also be engaged in the project. The project will involve characterization of whitefly through conventional and molecular approaches, development of whitefly management strategies based on natural enemies and integrated pest management strategies and development of resistant cotton germplasm against whitefly by RNA interference. This project is also funded by the Punjab Agricultural Research Board (PARB) and the project period spans over three years duration starting from October 2017.

"Better Cotton Initiative (BCI) for Sustainable Cotton Production in Pakistan": This project has been included in the Textile Policy 2014-19 developed by the Ministry of Commerce & Textile Industry, Government of Pakistan. The Pakistan Central Cotton Committee (PCCC) has been assigned the task to execute the "Better Cotton" project for three years (2017-2020) in the Punjab and Sindh provinces in coordination with organization of Better Cotton Initiative (BCI), Pakistan and other stakeholders. The project will cover districts of Multan and D.G. Khan in Punjab province and district Shaheed Benazirabad, Naushero Feroze and Dadu in Sindh province. This project will be executed by the CCRI, Multan and CCRI Sakrand through designated Provincial Coordinators. The proposed Better Cotton Production Program of PCCC will help the farmers to produce better quality cotton in Pakistan. The qualitative and quantitative factors involved in cotton production losses will be investigated thoroughly and tackled through better guidance and training of the farmers for cost effective and better quality cotton production in Punjab and Sindh provinces.

Pak-US-ICARDA Cotton Productivity Enhancement Program (CCRI Multan Component): This project was initiated during 2011. The objective of the project was to test and screen exotic cotton germplasm (USDA Material) for evolution of cotton leaf curl virus (CLCuV) resistant/tolerant varieties for enhancing cotton productivity in the country. The Institute has received more than 4000 cotton genotypes which were screened and 67 varieties were found resistant against CLCuV. But out of 67, flowering induced in two varieties, while 65 varieties are still under test and trial basis for the flower induction. This project was terminated during March 2017 but keeping in view the need for further research on the aspect, one year extension has been granted in the project duration. During the crop season 2018-19, two cotton varieties (Bt and non-Bt each) will be tested at national level in the National Coordinated Varietal Trial for testing their resistance / tolerance against the CLCuV at varied ecological zones. Moreover, the project assisted in the development of Cold Room for short, medium and long term storage / preservation of cotton seed.

#### c) <u>Memorandum of Understandings (MoUs) for Cotton Research & Development</u>

#### i) WWF Pakistan and CCRI Multan

CCRI Multan inked an MoU with WWF Pakistan to jointly undertake activities to develop and demonstrate sustainable practices to preserve natural attributes of cotton fiber at production and processing level. Both the partners will endeavor to involve each other in areas of mutual interest without any additional liabilities except as covered by this agreement. CCRI Multan will provide technical support to recommend appropriate cotton varieties with improved fiber quality characteristics, provide technical data of relevant research studies, translate research findings for dissemination among different supply chain actors from farm till ginning, provide technical support to develop and review standards for harvest and post-harvest practices, provide technical support to develop communication material, conduct trainings in collaboration with WWF-Pakistan on fiber quality preservation techniques for cotton supply chain actors, host seminars/workshops, and provide fibre testing facility as well. Whereas, WWF Pakistan will provide support for the technical resource persons/ trainers' boarding lodging and refreshment during trainings; as and when required, bear costs of producing communication material i.e. booklets, leaflets etc. pertaining to sustainable quality preservation techniques, organize seminars, workshops to focus the attention of relevant stakeholders' on sustainable fiber quality preservation techniques at different levels of supply chain.

#### ii) EMS R&D Solutions Ltd, England

Central Cotton Research Institute, Multan is working for the development of colored cotton on regular basis and the scientists have successfully evolved colored cotton with a staple length of 28mm and beyond with different color shades (light brown, brown, light green and dark brown). To explore feasibility of growing naturally-grown colored cotton

with its varying color shades, Skype meeting was organized between Mr. Ejaz Sheikh, Consultant, EMS R&D SOLUTIONS LTD, England, Prof Dr. Asif Ali, Vice Chancellor, Muhammad Nawaz Sharif University of Agriculture (MNSUA), Multan and Dr. Zahid Mahmood, Director CCRI Multan. Mr. Ejaz Sheikh who is working on a project "Water Pollution Prevention" with an objective of preventing water-borne diseases, preserving fast receding precious resource of drinkable water by using less and preventing contaminated water going back into water bed to pollute the rest, reducing pollution, global warming and carbon footprint, earn Pakistan and community prestigious place in the world. While, exploring potential for developing naturally-colored cotton for development of 10-12 colors of Organic Colored Cotton (Cost, Time etc) for guaranteed successful outcome. CCRI Multan offered to participate in such collaborative arrangements for developing naturally-colored cotton with different color shades.

#### iii) Punjab Agricultural Research Board (PARB)

Central Cotton Research Institute (CCRI) Multan and Punjab Agricultural Research Board (PARB), Lahore Government of the Punjab signed MoU for the general purpose of supporting and promoting cotton research. This Cooperation Program aims to foster advancement in research, commercialization and collaborative research in the areas of mutual interest to enhance sustainable productivity of cotton, reduce poverty, ensure food security through promotion, development and conduct of research mutually through mutual scientific and technical cooperation under PARB identified Research Themes will advance the state of S&T in the country and strengthen the scientific infrastructure. PARB funding for CCRI scientists to attend scientific conferences/ workshops/ seminars, etc. abroad, organizing scientific conferences/ workshops/seminars, etc. at CCRI, Multan, mutual support and cooperation in research projects and the activities for commercialization of their outputs of the PARB projects. Moreover, CCRI Multan will act as one of the evaluators for any of the cotton related research products developed through PARB funding.

#### iv) International Center for Agricultural Research in Dry Areas (ICARDA)

Central Cotton Research Institute, Multan is collaborating with ICARDA have agreed to enter into a research collaboration Agreement titled, "Improving Resistance to Cotton Leaf Curl Virus (CLCuV) and Supporting Cotton Best Management Practices for Small Farmers." CCRI Multan will be involved in research activities for the development of CLCuV resistant cotton varieties. The activities will include ratooning of resistant accessions for flower induction and to be used in crossing program, Testing of cotton varieties in National coordinated Varietal Trials (NCVT) during 2018-19, Screening of the ratoon crop, resistant/tolerant lines, ginning and fibre quality analysis and germplasm preservation.

## c) International Conference "Plant Health for Sustainable Agriculture: A Focused Approach for Food Security under Changing Climate"

Central Cotton Research Institute, Multan organized the 6<sup>th</sup> International Conference of Pakistan Phytopathological Society on emerging issue "Plant Health for Sustainable Agriculture: A Focused Approach for Food Security under Changing Climate" from November 20-22, 2017 in collaboration with Department of Plant Pathology, Bahauddin Zakariya University, Multan. Eminent researchers and scholars attended the conference including 05 foreign delegates. The topics covered in the Conference included climate change and plant diseases, molecular plant pathology, disease resistance, seed pathology, disease modeling, bioinformatics etc.

The inaugural session was chaired by Haji Muhammad Akram Ansari, Minister of State for Commerce & Textile Industry, Government of Pakistan; Prof. Dr. Tahir Amin, Vice Chancellor, Bahauddin Zakariya University Multan; Dr. Zahid Mahmood, Director CCRI Multan; Prof. Dr Rashida Atiq, Chairperson, Department of Plant Pathology, BZU Multan. Researchers, academicians, farmers, and students attended the conference.

The Technical Session of the Conference started with the invited speaker Prof. Dr. Wasantha Kumara from Sri Lanka and Dr. Xifeng Wang, China who presented their talks related to climate change on plant pathogens and transmission mechanism of virus. Other invited speaker included Mounir Abou Haidar, Department of Cell & Systems Biology, University of Toronto, Toronto, Canada, Dr. Herpinder Singh Randhawa, Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada.

The speakers presented their talks on Climate Change and Plant Diseases, Host-Pathogen Interactions, Molecular Plant Pathology, Biosecurity and Plant Quarantine, Plant Disease Management, Disease Resistance, Seed and Post-Harvest Pathology, Disease Modeling and Epidemiology, Taxonomy and Systematics of Plant Pathogens, Bioinformatics, Ecology of plant pathogens, Mycotoxins, Natural and chemical Pesticides, Insects in relation to Plant Diseases, Beneficial Microorganisms.

#### d) Cotton Seminar "Soil Health Improvement and Nutrition Management in Cotton"

CCRI Multan organized a seminar "Soil Health Improvement and Nutrition Management in Cotton". The seminar was chaired by Haji Muhammad Akram Ansari, Federal Minister of State for Commerce & Textile Industry; Syed Javaid Ali Shah, Federal Minister for Water Resources; Dr. Khalid Khokhar, Member Provincial Assembly Punjab; Prof. Dr. Asif Ali, Vice Chancellor MNSUA; and Dr. Khalid Abdullah, Vice President PCCC. Dr. Fiaz Ahmad, SSO/Head Plant Physiology delivered lecture on Plant Nutrition. Researchers and farmers attended the seminar.

#### e) Establishment of ICRA Secretariat

The International Cotton Advisory Committee (ICAC) established the International Cotton Researchers Association (ICRA) for the assistance of cotton researchers across the globe. PCCC, Multan was finalized, after going through a strong screening process to host the ICRA Secretariat for 5 Years. In this regard, an MoU signing Ceremony was held at CCRI Multan. Dr. Michel Fok, Chairman, ICRA and Dr. Khalid Abdullah, Vice President, PCCC were the signatories. The Secretariat will coordinate among cotton researchers and provide a platform for building linkages through enhancing membership and addressing cotton issues. Dr. Fiaz Ahmad was nominated as Secretary for this Secretariat.

#### f) Farmers' Field Day at Kot Addu

CCRI, Multan organized Farmers' Field Day for the awareness of farmers at Dera of Mr. Farooq Ahmad Nolatia, Peer Jaggi More, Kot Addu. The farmers visited the field then they were briefed by Dr. Zahid Mahmood, Director and Dr. Muhammad Idrees Khan Head Plant Breeding & Genetics Section of CCRI Multan about cotton production technology, clean picking, storage and transportation and seed maintenance for growing during next season.

#### g) <u>Demonstration of Mechanical Cotton Picking at CCRI Multan</u>

CCRI Multan introduced the mechanical picker for picking the cotton in the country. During the crop season 2017-18, the Institute organized a number of practical demonstrations of the mechanical picker for introduction among cotton farmers, field staff of agriculture extension and research, academicians, and executives at national and provincial level. Dr. Zahid Mahmood stated that this will revolutionize the cotton picking practices in the country. Moreover, cotton picker was also used for picking the leftover bolls which could save the crop from Pink bollworm and gather 4-5 maunds of additional seedcotton. Farmers can save cost and time by using mechanical cotton pickers.

#### h) Publication of Monthly Newsletter

The Institute has also started publication of monthly Newsletter for highlighting major activities and events organized during the crop season 2017-18. The newsletter publication started from the month of October 2017 on regular basis and so far 6 newletters have been published. The soft copies of the newsletters were also emailed to more than 700 researchers, policymakers, farmers and other stakeholders. Moreover, the Newsletter was also placed on the website and facebook account of the Institute as well.

#### i) <u>TeleCotton</u>

CCRI Multan introduced TeleCotton SMS service for the guidance of the cotton farmers. A short message was sent on daily basis during the crop season 2017-18 related to the aspects of current cotton crop situation viz., varietal selection, seed treatment, land preparation, irrigation, pesticide and fertilizer application, and proper picking. A total 9152 cotton farmers from all the four provinces were included in the list to receive day to day cotton crop management messages. Moreover, farmers were also replied to their queries with regard to crop management.

#### j) Website & Social Media

The Institute also introduced highlighting cotton research and development activities carried out during crop season 2017-18, utilizing social media tools, i.e., (<a href="https://www.facebook.com/CCRIM.PK">www.facebook.com/CCRIM.PK</a>). This has attracted cotton farmers, researchers, and students very effectively. The followers and members appreciated the activities carried out by the Institute.

The Institute has also upgraded the website (<u>www.ccrim.org.pk</u>) of the Institute highlighting major cotton research and development activities, brief program of various disciplines, cotton market rates, weather situation and other related activities.

The detail of research experiments conducted by different Sections are given in following pages.

#### 1. AGRONOMY

The agronomy section undertake applied research work in matters of crop production such as soil, water, nutrients, weeds management and planting time optimization for candidates and benchmark varieties (GMO's & Non GMO's) evolved by CCRI keeping in view the climatic vagaries. The practices are developed to ensure higher yield through minimizing the impact of various biotic and abiotic stresses. Furthermore, the productivity of cotton-wheat system is also being tested through innovative approach of relay cropping technology which enables early cotton planting in standing wheat to avoid the practice of leaving land fallow which was otherwise to be used for wheat. The daily record of metrological observations is also with section to be utilized in crop management strategies.

#### 1.1 Effect of time of sowing on productivity of advanced genotypes

Three genotypes i.e. CIM-620, CIM-610 and CIM-717 were tested at five sowing dates starting from April 15 to June 15 at fifteen days interval. Experimental design was split plot. Sowing dates were kept in main plots and genotypes in sub plots with four repeats. Bed-furrows were prepared after land preparation in dry condition followed by bed shaping and Dual Gold 960 EC @ 2L per hectare was sprayed after sowing on moist beds. Sowing was done with delinted seed by dibbling method followed by irrigation. Nitrogen at the rate of 150 kg ha<sup>-1</sup> was applied in three split doses. Other cultural practices and plant protection measures were adopted as per need of the crop. Data on plant height, boll number, boll weight, seed cotton yield and CLCuD incidence percentage is given in Table 1.1.

Table 1.1 Effect of sowing dates on plant height, seed cotton yield, yield components and CLCuD incidence

|              | and OE    |                      |                                           |                       |                                                |                                      |
|--------------|-----------|----------------------|-------------------------------------------|-----------------------|------------------------------------------------|--------------------------------------|
| Sowing dates | Genotypes | Plant height<br>(cm) | Number of<br>bolls<br>plant <sup>-1</sup> | Boll<br>weight<br>(g) | Seed cotton<br>yield<br>(kg ha <sup>-1</sup> ) | CLCuD incidence<br>(%) at<br>105 DAS |
|              | CIM-620   | 130.5                | 34                                        | 2.68                  | 3391                                           | 11.8                                 |
| April 15     | CIM-610   | 131.4                | 29                                        | 2.93                  | 2999                                           | 77.9                                 |
|              | CIM-717   | 129.1                | 31                                        | 2.80                  | 3079                                           | 22.0                                 |
|              | CIM-620   | 125.3                | 31                                        | 2.70                  | 3020                                           | 32.9                                 |
| May 01       | CIM-610   | 120.7                | 27                                        | 2.95                  | 2718                                           | 79.0                                 |
|              | CIM-717   | 121.0                | 29                                        | 2.83                  | 2910                                           | 91.4                                 |
|              | CIM-620   | 114.3                | 27                                        | 2.73                  | 2650                                           | 69.7                                 |
| May 15       | CIM-610   | 110.4                | 25                                        | 2.97                  | 2478                                           | 98.8                                 |
|              | CIM-717   | 111.9                | 27                                        | 2.85                  | 2690                                           | 93.3                                 |
|              | CIM-620   | 97.5                 | 19                                        | 2.75                  | 1896                                           | 100.0                                |
| June 01      | CIM-610   | 97.0                 | 19                                        | 3.00                  | 1923                                           | 100.0                                |
|              | CIM-717   | 99.2                 | 22                                        | 2.89                  | 2212                                           | 100.0                                |
|              | CIM-620   | 95.2                 | 18                                        | 2.77                  | 1660                                           | 100.0                                |
| June 15      | CIM-610   | 94.4                 | 16                                        | 3.02                  | 1556                                           | 100.0                                |
|              | CIM-717   | 88.1                 | 18                                        | 2.91                  | 1699                                           | 100.0                                |

DAS\* = Days after sowing

#### **Sub-effects**

| Sowing dates | Plant<br>height (cm) | Number of bolls plant <sup>-1</sup> | Boll<br>weight (g) | Seed cotton yield<br>(kg ha <sup>-1</sup> ) | CLCuD incidence<br>(%) at 105 DAS |
|--------------|----------------------|-------------------------------------|--------------------|---------------------------------------------|-----------------------------------|
| April 15     | 130.3                | 31.3                                | 2.80               | 3156                                        | 37.2                              |
| May 01       | 122.3                | 29.0                                | 2.83               | 2883                                        | 67.8                              |
| May 15       | 112.2                | 26.3                                | 2.85               | 2606                                        | 87.3                              |
| June 01      | 97.9                 | 20.0                                | 2.88               | 2010                                        | 100.0                             |
| June 15      | 92.6                 | 17.3                                | 2.90               | 1638                                        | 100.0                             |

| Genotypes      | Plant height (cm) | Number of bolls plant <sup>-1</sup> | Boll<br>weight (g) | Seed cotton yield<br>(kg ha <sup>-1</sup> ) | CLCuD incidence<br>(%) at 105 DAS |
|----------------|-------------------|-------------------------------------|--------------------|---------------------------------------------|-----------------------------------|
| CIM-620        | 112.6             | 25.8                                | 2.73               | 2523                                        | 62.9                              |
| CIM-610        | 110.8             | 23.2                                | 2.97               | 2335                                        | 91.1                              |
| CIM-717        | 109.9             | 25.4                                | 2.86               | 2518                                        | 81.3                              |
| C.D 5%         |                   |                                     |                    |                                             |                                   |
| Sowing date (S | SD) 8.50          | 2.64                                | ns                 | 201.90                                      | 7.87                              |
| Genotype (G    | ) ns              | 2.12                                | 0.10               | 96.60                                       | 1.97                              |
| SD x G         | 15.57             | 4.68                                | 0.39               | 267.80                                      | 8.66                              |

The data presented in Table 1.1 indicated that on overall average basis of sowing dates, CIM-620 and CIM-717 produced significantly higher seed cotton yield as compared to CIM-610. The genotypes CIM-620 and CIM-717 produced 8.1% and 7.8% higher seed cotton yields than CIM-610. The genotype CIM-620 produced 0.20% higher seed cotton yield than CIM-717. Average across the genotypes, plant height decreased as the sowing was delayed (Fig. 1), April 15 and May 01 sown crop produced significantly more number of bolls than other sowing dates (Fig. 2) and seed cotton yield decreased significantly as sowing was delayed (Fig. 4). While, boll weight increased as the sowing was delayed (Fig. 3). Among all sowing dates maximum boll weight was (2.90 g) produced from June 15 sown crop. The maximum bolls per plant (31.3) and seed cotton yield (3156 kg ha<sup>-1</sup>) were harvested from April 15 sown crop.

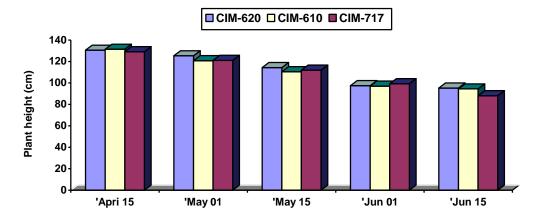



Fig 1 Sowing dates x Genotypes interaction on plant height

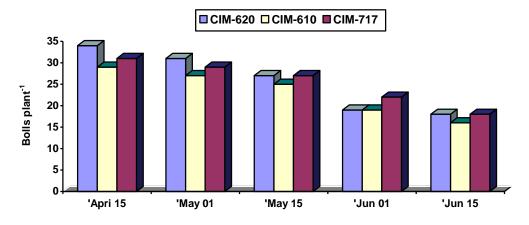



Fig 2 Sowing dates x Genotypes interaction on bolls plant<sup>-1</sup>

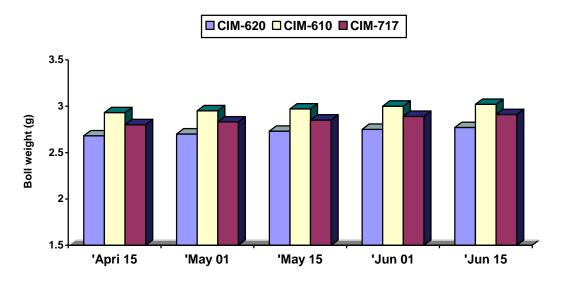



Fig 3 Sowing dates x Genotypes interaction on boll weight

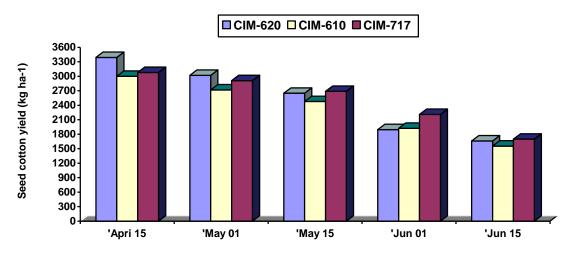



Fig 4 Sowing dates x Genotypes interaction on seed cotton yield

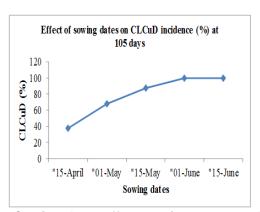



Fig 5. Sowing dates effect on virus infestation at 105 DAS

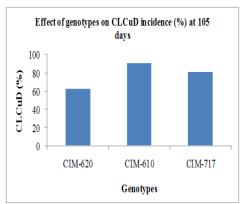



Fig 6. CLCuD Incidence in different genotypes

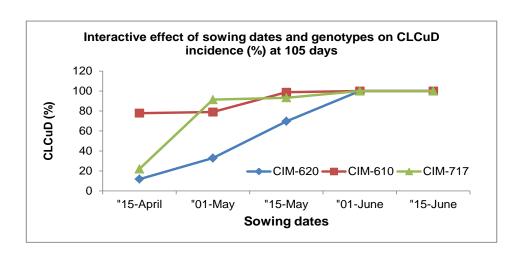



Fig 7. Sowing dates x Genotypes interaction for CLCuD incidence (%) at 105 DAS

The data on CLCuD showed that the disease incidence gradually increased as the sowing was delayed from April 15 up to June-15. The incidence of CLCuD at 105 days after sowing was observed 100% in June 01 and June 15 sown crops. Whereas, April 15, May 01 and May 15 showed 37.2%, 67.8% and 87.3% virus infestation, respectively (Fig. 5). On the average basis of sowing dates, genotype CIM-620 showed 18.4% and 28.2% less CLCuD incidence than CIM-717 and CIM-610, respectively (Fig. 6). The interaction between sowing dates and genotypes is illustrated in (Fig. 7).

#### 1.2 Effect of time of sowing on production of transgenic cotton

Five transgenic cotton genotypes i.e. *Bt.*Cyto-515, *Bt.*CIM-632, *Bt.*Cyto-313, *Bt.*CIM-343 and *Bt.*CIM-602 (std) were evaluated at six different sowing dates starting from March 01 to May 15 at fortnightly interval. Experimental design was split plot, sowing dates were kept in main plot and genotypes in sub plots with four repeats. Bed-furrows were prepared after land preparation in dry condition followed by bed shaping and Dual Gold 960 EC @ 2L per hectare was sprayed after sowing on moist beds. Sowing was done by manual dibbling of seeds at 25 cm plant to plant distance followed by irrigation. Other cultural practices and plant protection measures were adopted as per need of the crop. Data on plant height, boll number, boll weight, seed cotton yield and CLCuD incidence percentage recorded is given in Table 1.2.

The plant height, bolls per plant and seed cotton yield were decreased while boll weight was increased with delay in sowing (fig 8, 9, 11 and 10). The maximum plant height (140.3 cm), bolls plant (37) and seed cotton yield (3676 kg ha ) were harvested from March 01 sown crop. Among all sowing dates maximum boll weight (2.92 g) was produced from May 15 sown crop. On overall average basis of sowing dates, *Bt.*Cyto-313 produced 5.0%, 7.6%, 13.7% and 29.4% more seed cotton yield than *Bt.*CIM-343, *Bt.*Cyto-515, *Bt.*CIM-602 and *Bt.*CIM-632, respectively.

The data on CLCuD indicated that the disease incidence increased as the sowing was delayed from March 01 to May 15. The incidence of CLCuD after 105 days was observed 89.7% in May 01 and 96.7% in May 15 sown crop. While, March 01, March 15, April 01 and April 15 sown crops showed 4.3%, 6.1%, 32.9% and 81.8% virus infestation, respectively (Fig. 12). On the average basis of sowing dates, genotype *Bt*.Cyto-515 showed 3.4%, 4.7%, 5.6% and 8.5% less incidence of CLCuD than *Bt*.CIM-343, *Bt*.CIM-632, *Bt*.Cyto-313 and *Bt*.CIM-602, respectively (Fig. 13). The interaction between sowing dates and genotypes is illustrated in Fig. 14.

Effect of sowing dates on plant height, seed cotton yield & yield components and CLCuD incidence Table-1.2

| Sowing   | Genotypes   | Plant       | Number of                 | Boll       | Seed cotton                  | CLCuD incidence |
|----------|-------------|-------------|---------------------------|------------|------------------------------|-----------------|
| dates    | <b>,</b>    | height (cm) | bolls plant <sup>-1</sup> | weight (g) | yield (kg ha <sup>-1</sup> ) | (%) at 105 DAS  |
|          | Bt.Cyto-515 | 142.7       | 38                        | 2.92       | 3788                         | 0.0             |
|          | Bt.CIM-632  | 144.4       | 34                        | 2.64       | 3304                         | 2.0             |
| March 01 | Bt.Cyto-313 | 142.6       | 40                        | 2.70       | 4030                         | 4.1             |
|          | Bt.CIM-343  | 138.8       | 38                        | 2.86       | 3780                         | 4.9             |
|          | Bt.CIM-602  | 132.9       | 35                        | 2.68       | 3476                         | 10.7            |
|          | Bt.Cyto-515 | 139.1       | 36                        | 2.96       | 3628                         | 3.6             |
|          | Bt.CIM-632  | 140.9       | 31                        | 2.65       | 3014                         | 4.1             |
| March 15 | Bt.Cyto-313 | 139.5       | 38                        | 2.73       | 3826                         | 6.9             |
|          | Bt.CIM-343  | 133.2       | 37                        | 2.93       | 3676                         | 6.6             |
|          | Bt.CIM-602  | 127.9       | 33                        | 2.70       | 3338                         | 9.3             |
|          | Bt.Cyto-515 | 129.2       | 31                        | 3.02       | 3163                         | 26.8            |
|          | Bt.CIM-632  | 134.8       | 27                        | 2.66       | 2630                         | 39.0            |
| April 01 | Bt.Cyto-313 | 127.9       | 35                        | 2.75       | 3489                         | 33.3            |
|          | Bt.CIM-343  | 125.3       | 33                        | 3.00       | 3350                         | 32.4            |
|          | Bt.CIM-602  | 123.8       | 30                        | 2.72       | 3022                         | 32.8            |
|          | Bt.Cyto-515 | 126.0       | 28                        | 3.04       | 2874                         | 76.1            |
|          | Bt.CIM-632  | 130.3       | 25                        | 2.69       | 2347                         | 81.6            |
| April 15 | Bt.Cyto-313 | 127.5       | 32                        | 2.76       | 3204                         | 86.4            |
|          | Bt.CIM-343  | 121.1       | 29                        | 3.07       | 2918                         | 72.7            |
|          | Bt.CIM-602  | 119.7       | 28                        | 2.72       | 2829                         | 92.2            |
|          | Bt.Cyto-515 | 122.9       | 27                        | 3.11       | 2695                         | 83.8            |
|          | Bt.CIM-632  | 127.1       | 23                        | 2.73       | 2174                         | 89.2            |
| May 01   | Bt.Cyto-313 | 123.1       | 29                        | 2.78       | 2875                         | 91.8            |
|          | Bt.CIM-343  | 118.7       | 28                        | 3.13       | 2827                         | 90.8            |
|          | Bt.CIM-602  | 110.5       | 26                        | 2.76       | 2604                         | 92.9            |
|          | Bt.Cyto-515 | 119.8       | 25                        | 3.13       | 2562                         | 94.8            |
|          | Bt.CIM-632  | 119.1       | 22                        | 2.74       | 2086                         | 97.0            |
| May 15   | Bt.Cyto-313 | 120.3       | 27                        | 2.80       | 2710                         | 96.1            |
|          | Bt.CIM-343  | 116.3       | 26                        | 3.16       | 2616                         | 98.0            |
|          | Bt.CIM-602  | 104.7       | 24                        | 2.79       | 2442                         | 97.9            |

DAS\* =Days after sowing

#### Sub-effects

| Sowing dates | Plant height<br>(cm) | Number of bolls plant <sup>-1</sup> | Boll<br>weight (g) | Seed cotton<br>yield (kg ha <sup>-1</sup> ) | CLCuD<br>incidence (%)<br>at 105 DAS |
|--------------|----------------------|-------------------------------------|--------------------|---------------------------------------------|--------------------------------------|
| March 01     | 140.3                | 37.0                                | 2.76               | 3676                                        | 4.3                                  |
| March 15     | 136.1                | 35.0                                | 2.79               | 3496                                        | 6.1                                  |
| April 01     | 128.2                | 31.2                                | 2.83               | 3131                                        | 32.9                                 |
| April 15     | 124.9                | 28.4                                | 2.86               | 2834                                        | 81.8                                 |
| May 01       | 120.5                | 26.6                                | 2.90               | 2635                                        | 89.7                                 |
| May 15       | 116.0                | 24.8                                | 2.92               | 2483                                        | 96.7                                 |

| Genotypes   | Plant height<br>(cm) | Number of bolls plant <sup>-1</sup> | Boll weight<br>(g) | Seed cotton<br>yield (kg ha <sup>-1</sup> ) | CLCuD<br>incidence (%) at<br>105 DAS |
|-------------|----------------------|-------------------------------------|--------------------|---------------------------------------------|--------------------------------------|
| Bt.Cvto-515 | 130.0                | 30.8                                | 3.03               | 3118                                        | 47.5                                 |
| Bt.CIM-632  | 132.8                | 27.0                                | 2.69               | 2593                                        | 52.2                                 |
| Bt.Cyto-313 | 130.2                | 33.5                                | 2.75               | 3356                                        | 53.1                                 |
| Bt.CIM-343  | 125.6                | 31.8                                | 3.03               | 3195                                        | 50.9                                 |
| Bt.CIM-602  | 119.9                | 29.3                                | 2.73               | 2952                                        | 56.0                                 |

#### C.D 5%

| Sowing date (SD) | 13.01 | 2.16 | 0.13 | 174.05 | 5.73 |
|------------------|-------|------|------|--------|------|
| Genotype (G)     | 7.47  | 1.98 | 0.14 | 155.20 | 2.79 |
| SD x G           | 20.88 | 4.83 | 0.34 | 381.70 | 8.26 |

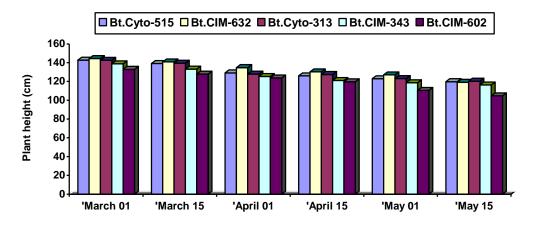



Fig 8 Sowing dates x Genotypes interaction on plant height

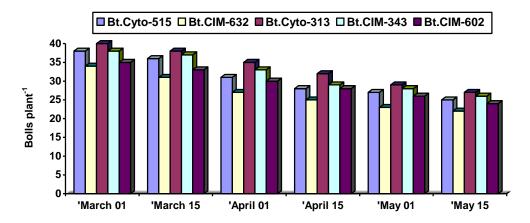



Fig 9 Sowing dates x Genotypes interaction on bolls plant<sup>-1</sup>

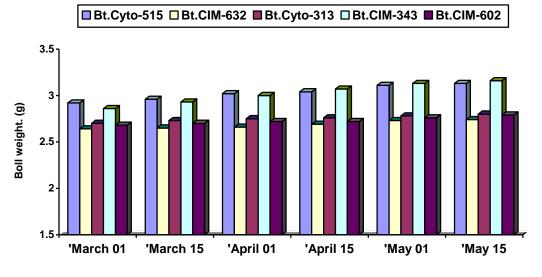



Fig 10 Sowing dates x Genotypes interaction on boll weight

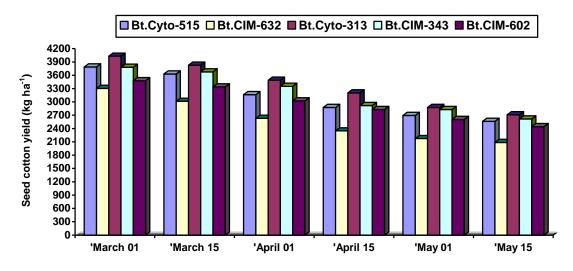
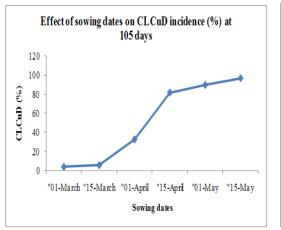




Fig 11 Sowing dates x Genotypes interaction on seed cotton yield



Effect of genotypes on CLCuD incidence (%) at 105 days 60 CLCuD (%) 55 50 45 40 Bt. Cyto-Bt. Cyto- Bt. CIM-Bt. CIM- Bt. CIM-515 632 313 343 602 Genotypes

Fig 12. Virus Infestation at 105 DAS at various sowing dates

Fig 13. CLCuD Incidence (%) in different genotypes

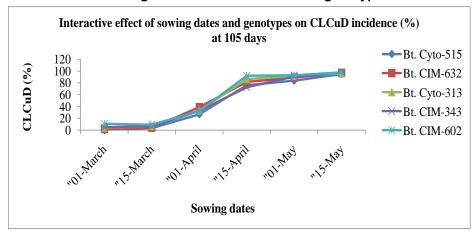



Fig 14. Sowing Dates x Bt. Genotypes Interaction for CLCuD Incidence (%) at 120 DAS

## 1.3 Yield response and nitrogen use efficiency of transgenic vs. conventional cotton genotypes to nitrogen application

Four genotypes, two from transgenic i.e. *Bt.*CIM-632 & *Bt.*Cyto-313, two from conventional group i.e. CIM-620 & CIM-610 were tested at five levels of nitrogen (0, 75, 150, 225 and 300 kg N ha<sup>-1</sup>). The design of experiment was split plot with four replications. The nitrogen was kept in main plots and genotypes in sub-plots. Bed-furrows were made after land preparation in dry condition and Dual Gold 960 EC @ 2L per hectare was sprayed after sowing on moist beds. Sowing was done on 17.05.2017 on bed-furrow by dibbling method followed by irrigation. The nitrogen fertilizer (75 to 300 kg N ha<sup>-1</sup>) was applied in three splits in respective plots. Other cultural practices and plant protection measures were adopted as per need of the crop. Data recorded on plant height, boll number, boll weight, seed cotton yield and agronomic nitrogen use efficiency are given in Table 1.3.

Table 1.3 Interactive effects of nitrogen fertilizer and genotypes on plant height, seed cotton

yield, yield parameters and agronomic nitrogen use efficiency

| Nitrogen dose          | Genotypes    | Plant  | Number of   |        | Seed cotton            | Agronomic nitrogen     |
|------------------------|--------------|--------|-------------|--------|------------------------|------------------------|
| (kg ha <sup>-1</sup> ) |              | height | bolls plant | weight | yield                  | use efficiency         |
|                        |              | (cm)   | 1           | (g)    | (kg ha <sup>-1</sup> ) | (kg kg <sup>-1</sup> ) |
|                        | Bt. CIM-632  | 119.7  | 17          | 2.65   | 1675                   | -                      |
| 0                      | Bt. Cyto-313 | 114.9  | 19          | 2.73   | 1883                   | -                      |
|                        | CIM-620      | 108.2  | 18          | 2.64   | 1756                   | -                      |
|                        | CIM-610      | 111.1  | 19          | 2.71   | 1864                   | -                      |
|                        | Bt. CIM-632  | 124.4  | 24          | 2.68   | 2394                   | 9.59                   |
| 75                     | Bt. Cyto-313 | 121.7  | 26          | 2.77   | 2671                   | 10.51                  |
|                        | CIM-620      | 114.5  | 25          | 2.68   | 2496                   | 9.87                   |
|                        | CIM-610      | 118.2  | 26          | 2.74   | 2615                   | 10.01                  |
|                        | Bt. CIM-632  | 130.1  | 26          | 2.70   | 2575                   | 6.00                   |
| 150                    | Bt. Cyto-313 | 128.0  | 30          | 2.79   | 2986                   | 7.35                   |
| 150                    | CIM-620      | 121.4  | 28          | 2.71   | 2836                   | 7.20                   |
|                        | CIM-610      | 125.3  | 29          | 2.78   | 2915                   | 7.01                   |
|                        | Bt. CIM-632  | 134.3  | 29          | 2.72   | 2899                   | 5.44                   |
| 225                    | Bt. Cyto-313 | 131.1  | 32          | 2.82   | 3240                   | 6.03                   |
| 223                    | CIM-620      | 123.2  | 30          | 2.72   | 2925                   | 5.20                   |
|                        | CIM-610      | 126.3  | 30          | 2.80   | 2964                   | 4.89                   |
|                        | Bt. CIM-632  | 137.2  | 33          | 2.74   | 3273                   | 5.33                   |
| 200                    | Bt. Cyto-313 | 134.1  | 34          | 2.83   | 3391                   | 5.03                   |
| 300                    | CIM-620      | 124.5  | 31          | 2.73   | 3070                   | 4.38                   |
|                        | CIM-610      | 129.6  | 31          | 2.80   | 3094                   | 4.10                   |

Sub-effects Nitrogen dose Plant Number of **Boll weight** Seed cotton Agronomic nitrogen (kg ha<sup>-1</sup>) height bolls plant<sup>-1</sup> yield (kg ha<sup>-1</sup>) use efficiency (g) (cm) (kg kg<sup>-1</sup>) 1795 0 113.5 18.3 2.68 10.00 75 119.7 25.3 2.72 2544 2828 6.89 150 126.2 28.3 2.75 225 128.7 30.3 2.77 3007 5.39

300

131.4

32.3

| Genotypes    | Plant<br>height<br>(cm) | Number of bolls plant <sup>-1</sup> | Boll weight<br>(g) | Seed cotton<br>yield<br>(kg ha <sup>-1</sup> ) | Agronomic nitrogen<br>use efficiency<br>(kg kg <sup>-1</sup> ) |
|--------------|-------------------------|-------------------------------------|--------------------|------------------------------------------------|----------------------------------------------------------------|
| Bt. CIM-632  | 129.1                   | 25.8                                | 2.70               | 2563                                           | 6.59                                                           |
| Bt. Cyto-313 | 126.0                   | 28.2                                | 2.79               | 2834                                           | 7.23                                                           |
| CIM-620      | 118.4                   | 26.4                                | 2.70               | 2617                                           | 6.66                                                           |
| CIM-610      | 122.1                   | 27.0                                | 2.77               | 2690                                           | 6.50                                                           |
| C.D 5%       |                         | •                                   |                    |                                                |                                                                |

2.78

3207

4.71

| Nitrogen (N)  | 11.68 | 1.43 | ns | 310.5 | - |
|---------------|-------|------|----|-------|---|
| Genotypes (G) | 7.24  | 1.30 | ns | 181.7 | - |
| NxG           | ns    | ns   | ns | ns    | - |

The data presented in Table 1.3 showed that plant height, number of bolls and seed cotton yield varied significantly for nitrogen over unfertilized plot. The plant height, number of bolls, boll weight and seed cotton yield were increased from 113.5 to 131.4 (cm), 18.3 to 32.3 (plant<sup>-1</sup>), 2.68 to 2.78 (g) and 1795 to 3207 (kg ha<sup>-1</sup>), respectively (fig. 15, 16, 17 and 18). Although, nitrogen application at the rate of 225 and 300 kg ha<sup>-1</sup> did not produce significant difference for seed cotton yield, however, value of additional seed cotton is higher than the expenses of 75 kg additional nitrogen. The agronomic nitrogen use efficiency (ANUE) was gradually decreased with successive increase in nitrogen application (fig 19.). The significant variations among genotypes were also recorded for number of bolls and seed cotton yield. The genotype *Bt.* Cyto-313 produced the highest number of bolls (28.2 plant<sup>-1</sup>), boll weight (2.79 g) and seed cotton yield (2834 kg ha<sup>-1</sup>) followed by non transgenic genotype CIM-610. The *Bt.*Cyto-313 gave the highest agronomic nitrogen use efficiency over rest of the genotypes. Among the both groups (transgenic vs. conventional), the transgenic genotypes produced only 90 kg ha<sup>-1</sup> additional seed cotton yield. The non-significant interaction between genotypes and nitrogen application rates indicated that there is no difference for nitrogen requirement of genotypes.

#### **Economic analysis:**

| Nitrogen<br>dose<br>(kg ha <sup>-1</sup> ) | Cost of fertilizer (Rs) | Additional seed cotton<br>yield<br>(kg ha <sup>-1</sup> ) | Value of additional seed cotton (Rs.) | Net income<br>(Rs.) | BCR  |
|--------------------------------------------|-------------------------|-----------------------------------------------------------|---------------------------------------|---------------------|------|
| 0                                          | -                       | -                                                         | -                                     | -                   | -    |
| 75                                         | 4557                    | 749                                                       | 54303                                 | 49746               | 11.9 |
| 150                                        | 9114                    | 1033                                                      | 74893                                 | 65779               | 8.2  |
| 225                                        | 13671                   | 1212                                                      | 87870                                 | 74199               | 6.4  |
| 300                                        | 18228                   | 1412                                                      | 102370                                | 84142               | 5.6  |

The nitrogen application at the rate of 75, 150, 225 and 300 kg ha<sup>-1</sup> produced 749, 1033, 1212 and 1412 kg additional seed cotton yield over control. The maximum net income (Rs. 84142) was obtained from 300 kg N ha<sup>-1</sup>. The benefit cost ratio decreased with each increase in nitrogen levels.

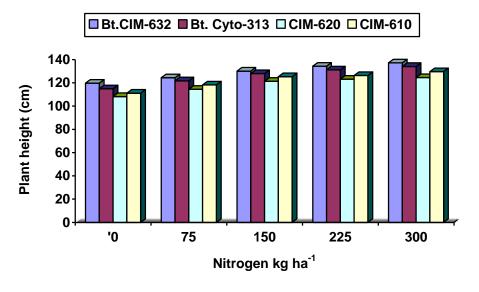



Fig 15 Nitrogen levels X genotypes interaction on plant height

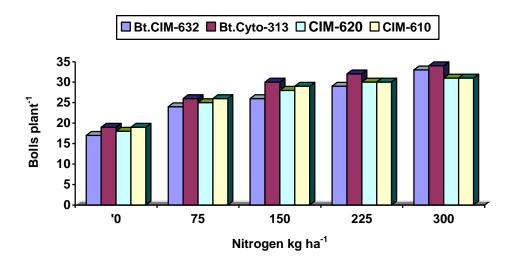



Fig 16 Nitrogen levels X genotypes interaction on bolls plant<sup>-1</sup>

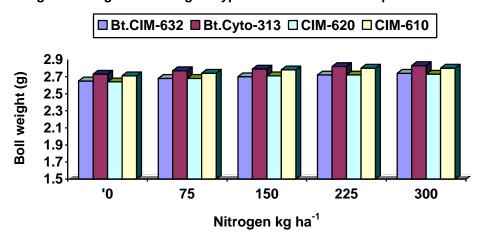



Fig 17 Nitrogen levels X genotypes interaction on boll weight

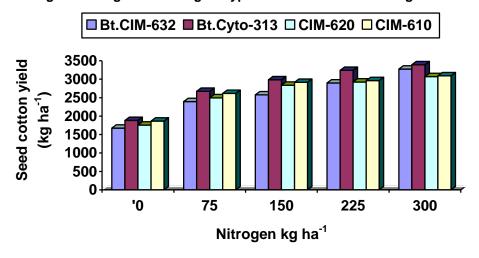



Fig 18 Nitrogen levels X genotypes interaction on seed cotton yield

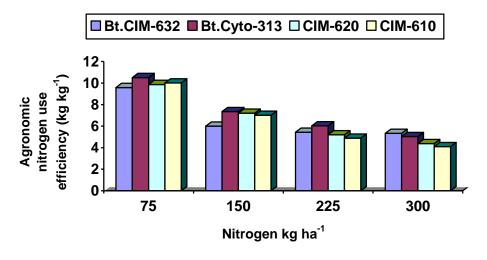



Fig 19 Nitrogen levels X genotypes interaction on agronomic nitrogen use efficiency

#### 1.4 Cotton as Relay Cropping

Cotton cultivar Bt. CIM-616 was planted as a test crop in all treatments of the experiment. The crop was sown on 18-03-2017 as sole crop on fallow land  $(T_1)$ . While, sowing in standing wheat was done on 18-03-2017 as a relay crop 75 cm apart rows  $(T_2)$  and 150 cm apart rows  $(T_3)$ , respectively. Conventional cotton sowing after wheat harvesting was completed on 24-05-2017  $(T_4)$ . The design of the experiment was Randomized Complete Block Design. Sowing was done by dibbling seeds at 25 cm plant to plant distance followed by irrigation. The Dual Gold 960 EC @ 2L per ha was sprayed on moist beds after planting in treatment  $(T_1$  and  $T_4)$ , while in  $T_2$  and  $T_3$ , it was applied with irrigation water. Other cultural practices and plant protection measures were adopted as per need of the crop. Data on plant population, plant height, boll number, boll weight and seed cotton yield are given in Table 1.4

Table 1.4: Plant population, plant height, seed cotton yield and yield components

| Treatments                                                  | Plant<br>population<br>(ha <sup>-1</sup> ) | Plant<br>height<br>(cm) | Bolls<br>(m <sup>-2</sup> ) | Boll<br>weight<br>(g) | Seed cotton<br>yield<br>(kg ha <sup>-1</sup> ) |
|-------------------------------------------------------------|--------------------------------------------|-------------------------|-----------------------------|-----------------------|------------------------------------------------|
| Cotton as sole (fallow land)                                | 50,000                                     | 122.3                   | 180                         | 2.70                  | 3965                                           |
| Cotton sowing in standing wheat (row to row distance 75cm)  | 65,000                                     | 129.2                   | 247                         | 2.69                  | 4283                                           |
| Cotton sowing in standing wheat (row to row distance 150cm) | 49,000                                     | 126.0                   | 178                         | 2.72                  | 3766                                           |
| Cotton planting after wheat harvesting                      | 48,000                                     | 110.5                   | 144                         | 2.71                  | 2935                                           |
| C.D 5%                                                      | 7649.3                                     | ns                      | 23.95                       | ns                    | 182.07                                         |

The data presented in Table 1.4 indicated that cotton sowing in standing wheat (75 cm apart rows) produced maximum plant height (129.2 cm), bolls (247 m<sup>-2</sup>) and seed cotton yield (4283 kg ha<sup>-1</sup>). While, the minimum bolls (144 m<sup>-2</sup>) and seed cotton yield (2935 kg ha<sup>-1</sup>) were produced from cotton sown after wheat harvesting. Whereas, the maximum boll weight (2.72 g) produced by the cotton in standing wheat (150 cm apart rows). Planting of cotton under modified technique i.e relay crop 75 cm apart rows produced 8.0%, 13.7% and 45.9% higher seed cotton yield over fallow land, wide row (150 cm) and after wheat harvesting, respectively.

#### 1.5 Full season competitive ability of major weeds in cotton

Cotton cultivar *Bt*. Cyto-179 has been sown on  $4^{th}$  May 2017 to determine the competitive ability of major weeds. The treatments included were weeds free  $(T_1)$ , all broad leave weeds  $(T_2)$ , all narrow leaves weeds  $(T_3)$  and all weeds  $(T_4)$ . Experimental design was Randomized Complete Block Design (RCBD) with three replications. Bed-furrows were prepared after land preparation in

dry condition followed by bed shaping. Sowing was done by manual dibbling of seeds at 25 cm plant to plant distance followed by irrigation. Data on plant height, boll number, boll weight and seed cotton yield are given in Table 1.5a

Table 1.5a: Effect of weeds on plant height, seed cotton yield and its components

| Treatments         | Plant height (cm) | Number of bolls plant <sup>-1</sup> | Boll<br>weight (g) | Seed cotton yield<br>(kg ha <sup>-1</sup> ) |
|--------------------|-------------------|-------------------------------------|--------------------|---------------------------------------------|
| Weeds free         | 113.5             | 32                                  | 2.78               | 3216                                        |
| Broad leave weeds  | 104.2             | 25                                  | 2.73               | 2480                                        |
| Narrow leave weeds | 102.4             | 23                                  | 2.73               | 2320                                        |
| All weeds          | 95.0              | 17                                  | 2.68               | 1754                                        |
| C.D 5%             | ns                | 7.81                                | ns                 | 568.76                                      |

The data presented in table 1.5a indicated that presence of weeds drastically reduced plant height, number of bolls, boll weight and seed cotton yield. The maximum reduction was observed in plots where both narrow and broad leave weeds were left uncontrolled. The narrow leave weeds affected the crop more negatively than broad leave weeds. The seed cotton yield was reduced by 23%, 28% and 46% for broad, narrow and both types of weeds, respectively over weed free plots.

Table 1.5b: Weeds competitive indices

| Treatments         | Weed density (m <sup>-2</sup> ) | Relative yield losses (%) | Relative competitive index | Competitive index |
|--------------------|---------------------------------|---------------------------|----------------------------|-------------------|
| Weeds free         | -                               | -                         | -                          | -                 |
| Broad leave weeds  | 37                              | 22.9                      | 0.23                       | 1.99              |
| Narrow leave weeds | 63                              | 27.9                      | 0.28                       | 1.42              |
| All weeds          | 107                             | 45.5                      | 0.45                       | 1.37              |

The data presented in table 1.5b indicated that the maximum yield losses (45.5%) and relative competitive index (0.45) were recorded in plots with presence of both narrow and broad leave weeds. The competitive index represents the yield loss per weed (m<sup>-2</sup>) which was the maximum in broad leave weeds followed by narrow and all weeds. Although narrow leave weeds density was higher than broad leave weeds, but yield losses per weed was greater in broad leave weeds. Among all weed treatments, the narrow leave weeds are deleterious for yield on account of higher density.

## 1.6 Topping and branch removal impacts on growth and yield performance of cotton in various plant spacing

Cotton cultivar Bt. CIM-616 was sown on  $19^{th}$  May 2017 to determine the suitability of branch removal for various planting densities. The treatments included three planting distances i.e. 15 cm ( $T_1$ ), 30 cm ( $T_2$ ) & 45 cm ( $T_3$ ) and no branch removal ( $T_4$ ), monopodia removal at 100 cm ( $T_4$ ), tip removal at 100 cm ( $T_3$ ) and monopodia and tip removal at 100 cm height ( $T_4$ ). Experimental design was split plot, plant spacing were kept in main plot and branch removal in sub plots with three repeats. Bed-furrows were prepared after land preparation in dry condition followed by bed shaping and Dual Gold 960 EC @ 2L per hectare was sprayed after sowing on moist beds. Sowing was done by manual dibbling followed by irrigation. The branch removal treatments were applied on acquiring desired plant height. Data on plant population, plant height, boll number, boll weight and seed cotton yield are given in Table 1.6

Table 1.6: Effect of plant spacing and branch removal on plant population, plant height, yield and yield components

| Plant<br>Spacing<br>(cm) | Topping treatment                   | Plant<br>Population<br>(ha <sup>-1</sup> ) | Plant<br>height<br>(cm) | Number<br>of bolls<br>(m <sup>-2</sup> ) | Boll<br>weight (g) | Seed cotton<br>yield (kg ha <sup>-1</sup> ) |
|--------------------------|-------------------------------------|--------------------------------------------|-------------------------|------------------------------------------|--------------------|---------------------------------------------|
|                          | No branch removal                   | 82333                                      | 125.9                   | 172.0                                    | 2.71               | 3722                                        |
|                          | Monopodia removal at 100 cm         | 81884                                      | 116.3                   | 139.0                                    | 2.71               | 2950                                        |
| 15                       | Tip removal at 100 cm               | 82609                                      | 106.1                   | 164.0                                    | 2.72               | 3640                                        |
|                          | Monopodia and tip removal at 100 cm | 82333                                      | 103.6                   | 123.0                                    | 2.71               | 2610                                        |
|                          | No branch removal                   | 39333                                      | 119.7                   | 112.0                                    | 2.72               | 2751                                        |
|                          | Monpodiaremoval at 100 cm           | 39275                                      | 114.8                   | 92.0                                     | 2.72               | 2232                                        |
| 30                       | Tip removal at 100 cm               | 40609                                      | 105.6                   | 108.0                                    | 2.74               | 2672                                        |
|                          | Monopodia and tip removal at 100 cm | 41275                                      | 103.7                   | 88.0                                     | 2.72               | 2088                                        |
|                          | No branch removal                   | 27333                                      | 117.8                   | 81.0                                     | 2.76               | 2034                                        |
|                          | Monpodiaremoval at 100 cm           | 27001                                      | 110.4                   | 70.0                                     | 2.75               | 1723                                        |
| 45                       | Tip removal at 100 cm               | 26738                                      | 105.2                   | 78.0                                     | 2.77               | 1955                                        |
|                          | Monopodia and tip removal at 100 cm | 27333                                      | 102.9                   | 68.0                                     | 2.75               | 1542                                        |

#### Sub-effects

| <b>OUD 0110010</b> |                                      |                   |                                    |                    |                                             |   |
|--------------------|--------------------------------------|-------------------|------------------------------------|--------------------|---------------------------------------------|---|
| Plant Spacing (cm) | Plant Population (ha <sup>-1</sup> ) | Plant height (cm) | Number of bolls (m <sup>-2</sup> ) | Boll weight<br>(g) | Seed cotton<br>yield (kg ha <sup>-1</sup> ) | Ì |
| 15                 | 82290                                | 113.0             | 149.5                              | 2.71               | 3231                                        | ı |
| 30                 | 40123                                | 111.0             | 100.0                              | 2.73               | 2436                                        | ı |
| 45                 | 27101                                | 109.1             | 74.3                               | 2.76               | 1814                                        | 1 |

| Topping treatment                                               | Plant Population (ha <sup>-1</sup> ) | Plant height (cm) | Number of bolls<br>(m <sup>-2</sup> ) | Boll weight (g) | Seed cotton<br>yield (kg ha <sup>-1</sup> ) |
|-----------------------------------------------------------------|--------------------------------------|-------------------|---------------------------------------|-----------------|---------------------------------------------|
| No branch removal                                               | 49666                                | 121.1             | 121.7                                 | 2.73            | 2836                                        |
| Monopodia removal at 100 cm                                     | 49387                                | 113.8             | 100.3                                 | 2.73            | 2302                                        |
| Tip removal at 100 cm<br>Monopodia and tip<br>removal at 100 cm | 49985<br>50314                       | 105.6<br>103.4    | 116.7<br>93.0                         | 2.74<br>2.73    | 2756<br>2080                                |

|    |   | _ | 0/ |
|----|---|---|----|
| U. | v | ວ | 70 |

| O.D 3 /0    |         |      |       |    |       |
|-------------|---------|------|-------|----|-------|
| Spacing (S) | 2511.30 | ns   | 18.13 | ns | 289.5 |
| Topping (T) | ns      | 9.88 | 9.66  | ns | 187.5 |
| SxT         | ns      | ns   | ns    | ns | ns    |

The data presented in table 1.6 indicated that plant population, number of bolls ( $m^{-2}$ ) and seed cotton yield was significantly decreased with increasing plant spacing. The narrow plant spacing i.e 15 cm produced 32.6% and 78.1% higher seed cotton yield over 30 and 45 cm plant spacing, respectively on account of high boll density. The topping treatment significantly influenced plant height, number of bolls ( $m^{-2}$ ) and seed cotton yield. The seed cotton yield and number of bolls ( $m^{-2}$ ) were decreased in various topping treatments. The maximum reduction was observed where both monopodia and tip was removed together followed by only monopodia removal and only tip removal.

#### Internship

Agronomy Section provided research facilities to one Ph.D. scholar from faculty of Agricultural Science and Technology, Bahauddin Zakariya University in addition to eleven students of B.Sc (Hons.) Agriculture (Agronomy) from different Agricultural Colleges/Universities throughout the country. They were facilitated in research activities and internship training under the supervision of experts.

#### Cost of Production of One Acre Cotton for the Year 2017-18

| Sr.<br>No. | Operations and Inputs                               | Number/<br>Quantity | Rate<br>(Rs)         | Amount<br>(Rs.) |
|------------|-----------------------------------------------------|---------------------|----------------------|-----------------|
| 1.         | Seedbed Preparation                                 |                     | (113)                | 4062            |
| ١.         | a) Cultivation (Ploughing + planking)               | 4                   | 500/cultivation      | 2000.00         |
|            | b) Leveling                                         | ĺ                   | 360/leveling         | 360.00          |
|            | c) Bed and furrow making                            | 1                   | 500/acre             | 500.00          |
|            | d) Pre-emergence Herbicide                          | 1.2                 | 960/liter            | 1152.00         |
|            | e) Bund making                                      | 1                   | 50/acre              | 50.00           |
| 2.         | Seed                                                |                     |                      | 1285.00         |
|            | a. Cost                                             | 8 kg.               | 6000/40 kg           | 1200.00         |
|            | b. Transportation                                   | -                   | 25/bag               | 5.00            |
|            | c. Delinting                                        | -                   | 400/40 kg            | 80.00           |
| 3.         | Sowing                                              | 2 men day           | 1116/acre            | 1116.00         |
| 4.         | Thinning                                            | 2 men day           | 1116/acre            | 1116.00         |
| 5.         | Interculturing and earthing up                      | 4                   | 500/acre             | 2000.00         |
| 6.         | Irrigation                                          |                     |                      | 9696.00         |
|            | a. Land preparation (3 hours)                       | 1/3 canal           |                      |                 |
|            | b. Rouni (4 hours)                                  | 2/3 tubewell        | 400/hour of tubewell | 7464.00         |
|            | c. Post planting irrigation (21hours)               |                     |                      |                 |
|            | d. Cleaning of water channel and labour charges for | 4 man day           | 558/man day          | 2232.00         |
|            | irrigation                                          |                     |                      |                 |
| 8.         | Abiana (Water rates)                                | -                   | 85/acre              | 85.00           |
| 9.         | <u>Fertilizer</u>                                   |                     |                      | <u>8858.00</u>  |
|            | a. DAP (Di-Amonium Phosphate)                       | 1 bag               | 2600/bag             | 2600.00         |
|            | b. Urea                                             | 4.0 bags            | 1400/bag             | 5600.00         |
|            | c. Transportation                                   | 4.0 bags            | 25/bag               | 100.00          |
|            | d. Fertilizer Application Charges                   | 1man day            | 558/day              | 558.00          |
| 10.        | Plant Protection                                    |                     |                      | <u>10650.00</u> |
|            | a. Sucking                                          | 9                   | 750/spray            | 6750.00         |
|            | b. Bollworm                                         | 6                   | 650/spray            | 3900.00         |
| 11.        | Harvesting (Picking charges)                        | 840 Kg              | 10.0/kg              | 8400.00         |
| 12         | Stick Cutting                                       | 2 men day           | 558/man day          | +1116.00        |
| 12a        | Value of cotton sticks                              |                     |                      | -1116.00        |
| 13.        | Managerial Charges For 1 acre                       | 7 month             | 20000/month/100 acre | 1400.00         |
| 14.        | Land Rent                                           | 7 months            | 35,000/acre/annum    | 20417.00        |
| 16.        | Unforeseen Expenses                                 | -                   | 2000/acre            | 2000.00         |
| 17.        | Production Expenditure                              | -                   | -                    |                 |
|            | a. Including Land Rent                              |                     |                      | 71085.00        |
|            | b. Excluding Land Rent                              |                     |                      | 50668.00        |
| 18.        | Mark-up on Investment                               | 7 month             | 12.5% for one year   |                 |
|            | a. Including Land Rent                              |                     |                      | 5183.00         |
|            | b. Excluding Land Rent                              |                     |                      | 3695.00         |
| 19.        | Total Expenditure                                   |                     |                      |                 |
|            | a. Including Land Rent                              |                     |                      | 76268.00        |
| L          | b. Excluding Land Rent                              |                     |                      | 54363.00        |
| 20.        | Income of Seed Cotton                               | 840 kg              | 2900/40 kg           | 60900. 00       |
| 21.        | Market expenses                                     | 840 kg              | 100/40 kg            | 2100.00         |
| 22.        | Cost of Production at Farm level                    | -                   |                      |                 |
|            | a. Including Land Rent                              |                     | Per 40 kg            | 3631.81         |
|            | b. Excluding Land Rent                              |                     |                      | 2588.71         |
| 23.        | Cost of production at Market                        | -                   |                      |                 |
|            | a. Including Land Rent.                             |                     | Per 40 kg            | 3731.81         |
|            | b. Excluding Land Rent.                             |                     |                      | 2688.71         |

\_\_\_\_\_

#### 2. PLANT BREEDING & GENETICS SECTION

Plant Breeding & Genetics Section evolves new cotton varieties or lines with desirable fibre properties by utilizing purposeful breeding (crossing) of closely or distantly related individuals. Plants are crossbred to introduce traits/genes from one variety or line into a new genetic background.

The promising hybrids, Bt. and non-Bt. strains from all the cotton breeders of the country were evaluated under National Coordinated Variety Testing (NCVT) Programme of Pakistan Central Cotton Committee and Provincial Coordinated Cotton Trial (PCCT) of the Punjab Government. The commercial varieties (Bt. and non-Bt.) of the country were also conducted to test their performance evaluated under local conditions in standard varietal trial. The breeding materials in different filial generations were screened out for further process. Major emphasis was laid on the selection of material having resistance/tolerance to BSCV along with excellent fibre characteristics. Fresh crosses were also attempted to develop resistance/tolerance to BSCV in new Bt. & Non-Bt breeding material. Pre-basic seed of commercial varieties viz., CIM-496, CIM-620, CIM-554, CIM-573, Bt.CIM-598, Bt.CIM-600, Bt.CIM-599 and Bt.CIM-602 were produced for distribution to public and private seed corporations for further multiplication. The genetic stock of World Cotton collections comprising of 5923 cultivars of four Gossypium species is being maintained for evaluation, introduction as well as utilization in breeding program by cotton breeders in the country and abroad. Training was also given to small farmers, progressive growers and students from different universities. The summary of results is as below.

#### 2.1 Testing of new strains

#### 2.1.1 Varietal Trial-1

Objective: Testing and evaluation of promising medium long staple *Bt.* strains for the development of commercial varieties

Six medium long staple promising *Bt.* strains viz., CIM-657, CIM-658, CIM-659, CIM-660, CIM-661, and CIM-662, were evaluated against two *Bt.* commercial varieties i.e. *Bt.*CIM-602 and FH-142 at CCRI, Multan and Punjab Seed Corporation Farm, Khanewal. Data of seed cotton yield and other parameters are given in **Tables 2.1**, **2.2** and **2.3**.

Averaged across the two locations, the strain CIM-662 produced the highest seed cotton yield of 3805 kg ha<sup>-1</sup> followed by CIM-657 having yield 3750 kg ha<sup>-1</sup> while the standard varieties *Bt*.CIM-602 and FH-142 yielded 2876 and 2811 kg ha<sup>-1</sup> respectively **(Table 2.1).** 

Table 2.1 Performance of advanced strains in Varietal Trial-1 at two locations

| Strains | Seedo            | cotton yield (kg ha <sup>-1</sup> ) |         | Lint                            | Av. Boll      | Plant                       |
|---------|------------------|-------------------------------------|---------|---------------------------------|---------------|-----------------------------|
|         | Multan<br>(5/5)* | Khanewal<br>(17/5)                  | Average | Yield<br>(kg ha <sup>-1</sup> ) | weight<br>(g) | Pop.<br>(ha <sup>-1</sup> ) |
| CIM-657 | 3691             | 3808                                | 3750    | 1485                            | 2.8           | 28066                       |
| CIM-658 | 3428             | 3333                                | 3381    | 1349                            | 2.7           | 28066                       |
| CIM-659 | 2898             | 3050                                | 2974    | 1133                            | 3.5           | 33715                       |
| CIM-660 | 2687             | 2833                                | 2760    | 1018                            | 2.5           | 33177                       |
| CIM-661 | 3507             | 3423                                | 3465    | 1441                            | 2.8           | 29680                       |
| CIM-662 | 3706             | 3903                                | 3805    | 1541                            | 3.3           | 31742                       |
| CIM-602 | 2820             | 2932                                | 2876    | 1096                            | 3.2           | 34701                       |
| FH-142  | 2782             | 2840                                | 2811    | 1034                            | 2.7           | 29321                       |

<sup>\* =</sup> Sowing date 05.05.2017

CD (5%) for seed cotton: Locations (L) = 69.09; Varieties (V) = 88.17, L x V = 108.08

The new strain CIM-661 produced the highest lint percentage of 41.6, followed by CIM-662 having lint percentage values of 40.5 as compared with the standard *Bt.*CIM-602 (38.1%) and FH-142 (36.8%) (**Table 2.2**). The new strain CIM-658 produced the longest staple of 31.0 mm, followed by CIM-661 with 29.7 mm while the standards *Bt.*CIM-602 and FH-142 produced 27.9 and 28.0 mm staple length, respectively (**Table 2.2**).

Table 2.2 Lint percentage and staple length of advanced strains in Varietal Trial-1 at two locations

| Strains | Lint (%age) |          |         | S      | taple length (mr | n)      |
|---------|-------------|----------|---------|--------|------------------|---------|
|         | Multan      | Khanewal | Average | Multan | Khanewal         | Average |
| CIM-657 | 39.2        | 39.9     | 39.6    | 28.6   | 29.1             | 28.9    |
| CIM-658 | 39.7        | 40.1     | 39.9    | 30.8   | 31.2             | 31.0    |
| CIM-659 | 37.5        | 38.7     | 38.1    | 28.9   | 29.2             | 29.1    |
| CIM-660 | 36.4        | 37.3     | 36.9    | 27.7   | 28.3             | 28.0    |
| CIM-661 | 41.1        | 42.1     | 41.6    | 29.1   | 30.2             | 29.7    |
| CIM-662 | 40.2        | 40.8     | 40.5    | 28.6   | 29.4             | 29.0    |
| CIM-602 | 37.8        | 38.3     | 38.1    | 27.5   | 28.3             | 27.9    |
| FH-142  | 36.7        | 36.9     | 36.8    | 27.9   | 28.1             | 28.0    |

All the new strains possess desirable micronaire value ranging from 4.3 to 4.7  $\mu$ g inch<sup>-1</sup> in comparison to *Bt*.CIM-602 with 4.7  $\mu$ g inch<sup>-1</sup>.The fiber strength of all the new strains and standards are in the desirable range, i.e., 28.4 to 31.4 g/tex (**Table 2.3**).

Table 2.3 Micronaire value and fibre strength of advanced strains in Varietal Trial-1 at two locations

| Strains | Micronaire value (μg inch <sup>-1</sup> ) |          |         | Fit    | ore strength (g | /tex)   |
|---------|-------------------------------------------|----------|---------|--------|-----------------|---------|
|         | Multan                                    | Khanewal | Average | Multan | Khanewal        | Average |
| CIM-657 | 4.4                                       | 4.3      | 4.4     | 28.8   | 28.7            | 28.8    |
| CIM-658 | 4.7                                       | 4.2      | 4.5     | 31.6   | 31.2            | 31.4    |
| CIM-659 | 4.9                                       | 4.1      | 4.5     | 29.6   | 29.3            | 29.5    |
| CIM-660 | 4.4                                       | 4.2      | 4.3     | 29.1   | 28.9            | 29.0    |
| CIM-661 | 4.9                                       | 4.3      | 4.6     | 29.5   | 29.2            | 29.4    |
| CIM-662 | 4.8                                       | 4.3      | 4.6     | 30.0   | 29.8            | 29.9    |
| CIM-602 | 4.9                                       | 4.5      | 4.7     | 28.6   | 28.1            | 28.4    |
| FH-142  | 4.5                                       | 4.1      | 4.3     | 29.5   | 29.3            | 29.4    |

#### 2.1.2 Varietal Trial-2

## Objective: Testing and evaluation of promising medium long staple strains for the Development of commercial varieties

Ten new strains with medium-long staple viz., CIM-650, CIM-651, CIM-652, CIM-653, CIM-656, CIM-664, CIM-665, CIM-666, CIM-667 and CIM-668 were tested at CCRI, Multan and Punjab Seed Corporation Farm, Khanewal against two commercial varieties CIM-602 and FH-142.

Data presented in **Table 2.4** showed that averaged across locations the new strain CIM-653 produced the highest seed cotton yield of 4004 kg ha<sup>-1</sup>, followed by CIM-652 with 3599 kg ha<sup>-1</sup> and CIM-667 with 2884 kg ha<sup>-1</sup> while the standard varieties *Bt.*CIM-602 and FH-142 produced 2352 kg ha<sup>-1</sup> and 2452 kg yield ha<sup>-1</sup> respectively.

The strain CIM-665 and CIM-668 had the highest lint percentage of 40.0, followed by 39.7% of CIM-656 in comparison to the commercial varieties CIM-602 and FH-142 produced 37.2 lint percentages. The strain CIM-664 produced the longest staple of 30.4 mm followed by CIM-651 and CIM-650 having 29.2 and 28.7 mm respectively. (Table 2.5)

All the strains possess desirable micronaire values ranging from 3.9 to 4.9  $\mu$ g inch<sup>-1</sup>. The fibre strength of the strains ranged from 26.6 to 31.5 G/Tex **(Table 2.6)**.

Table 2.4 Performance of advanced strains in Varietal Trial-2 at two locations

|         | Seed of | cotton yield (k | κg ha⁻¹) | Lint                   | Av. boll | Plant               |
|---------|---------|-----------------|----------|------------------------|----------|---------------------|
| Strains | Multan  | Khanewal        | Avorage  | yield                  | weight   | Pop.                |
|         | (28/4)* | (17/5)*         | Average  | (kg ha <sup>-1</sup> ) | (g)      | (ha <sup>-1</sup> ) |
| CIM-650 | 2531    | 2654            | 2593     | 980                    | 3.0      | 37481               |
| CIM-651 | 3577    | 2152            | 2865     | 1077                   | 3.1      | 41067               |
| CIM-652 | 3253    | 3945            | 3599     | 1353                   | 3.2      | 39274               |
| CIM-653 | 4034    | 3974            | 4004     | 1562                   | 3.1      | 38915               |
| CIM-656 | 3293    | 2224            | 2759     | 1095                   | 2.9      | 32370               |
| CIM-664 | 2611    | 2654            | 2633     | 961                    | 3.6      | 40709               |
| CIM-665 | 3286    | 2439            | 2863     | 1145                   | 2.7      | 33356               |
| CIM-666 | 3328    | 2224            | 2776     | 1049                   | 3.2      | 39991               |
| CIM-667 | 3400    | 2367            | 2884     | 1078                   | 3.6      | 39633               |
| CIM-668 | 2921    | 2798            | 2860     | 1144                   | 3.3      | 37570               |
| CIM-602 | 2466    | 2238            | 2352     | 875                    | 2.7      | 39991               |
| FH-142  | 2322    | 2582            | 2452     | 912                    | 3.1      | 36943               |

<sup>\* =</sup> Sowing date 28.04.2017

CD (5%) for seed cotton: Locations (L) = 29.53; Varieties (V) = 72.34; L x V = 102.31

Table 2.5 Lint percentage and staple length of advanced strains in Varietal Trial-2 at two locations

| = 4     |        |             |         |        |                |         |  |  |
|---------|--------|-------------|---------|--------|----------------|---------|--|--|
| Strains |        | Lint (%age) |         | Sta    | ole length (mm | 1)      |  |  |
| Strains | Multan | Khanewal    | Average | Multan | Khanewal       | Average |  |  |
| CIM-650 | 37.5   | 38.1        | 37.8    | 28.7   | 28.7           | 28.7    |  |  |
| CIM-651 | 37.7   | 37.4        | 37.6    | 28.9   | 29.5           | 29.2    |  |  |
| CIM-652 | 37.7   | 37.4        | 37.6    | 28.4   | 28.5           | 28.5    |  |  |
| CIM-653 | 39.0   | 39.0        | 39.0    | 28.5   | 28.4           | 28.5    |  |  |
| CIM-656 | 39.3   | 40.1        | 39.7    | 27.4   | 26.8           | 27.1    |  |  |
| CIM-664 | 36.4   | 36.5        | 36.5    | 30.6   | 30.2           | 30.4    |  |  |
| CIM-665 | 39.7   | 40.2        | 40.0    | 28.6   | 28.0           | 28.3    |  |  |
| CIM-666 | 37.1   | 38.4        | 37.8    | 28.5   | 28.1           | 28.3    |  |  |
| CIM-667 | 37.3   | 37.4        | 37.4    | 28.3   | 28.5           | 28.4    |  |  |
| CIM-668 | 39.9   | 40.0        | 40.0    | 28.2   | 28.0           | 28.1    |  |  |
| CIM-602 | 37.6   | 36.7        | 37.2    | 27.7   | 27.5           | 27.6    |  |  |
| FH-142  | 37.0   | 37.3        | 37.2    | 26.5   | 26.7           | 26.6    |  |  |

Table 2.6 Micronaire value and fibre strength of advanced strains in Varietal Trial-2 at two locations

| Strains | Micron | aire value (μ | g inch <sup>-1</sup> ) | Fibre strength (g/tex) |          |         |  |
|---------|--------|---------------|------------------------|------------------------|----------|---------|--|
| Suams   | Multan | Khanewal      | Average                | Multan                 | Khanewal | Average |  |
| CIM-650 | 4.7    | 4.3           | 4.5                    | 29.9                   | 30.2     | 30.1    |  |
| CIM-651 | 5.0    | 4.8           | 4.9                    | 28.2                   | 28.9     | 28.6    |  |
| CIM-652 | 5.1    | 4.3           | 4.7                    | 27.4                   | 28.2     | 27.8    |  |
| CIM-653 | 4.7    | 4.3           | 4.5                    | 29.1                   | 26.2     | 27.7    |  |
| CIM-656 | 5.1    | 4.7           | 4.9                    | 27.8                   | 25.5     | 26.7    |  |
| CIM-664 | 4.0    | 3.7           | 3.9                    | 32.6                   | 30.3     | 31.5    |  |
| CIM-665 | 4.8    | 4.6           | 4.7                    | 29.6                   | 29.1     | 29.4    |  |
| CIM-666 | 4.7    | 4.1           | 4.4                    | 29.7                   | 28.6     | 29.2    |  |
| CIM-667 | 4.6    | 3.9           | 4.3                    | 29.8                   | 29.8     | 29.8    |  |
| CIM-668 | 5.1    | 4.4           | 4.8                    | 28.5                   | 28.6     | 28.6    |  |
| CIM-602 | 4.4    | 4.1           | 4.3                    | 28.8                   | 27.7     | 28.3    |  |
| FH-142  | 4.8    | 4.8           | 4.8                    | 27.0                   | 26.1     | 26.6    |  |

### 2.1.3 Varietal Trial-3

## Objective: Testing and evaluation of promising medium long staple non *Bt.* strains for the development of commercial varieties

Seven medium staple promising non *Bt.* Strains CIM-610, CIM-722, CIM-723, CIM-725, CIM-726, CIM-727 and CIM-728 were evaluated against commercial variety CIM-573 at CCRI, Multan and Punjab Seed Corporation Farm, Khanewal. Data on seed cotton yield and other parameters are given in **Tables 2.7**, **2.8** and **2.9**.

Averaged across locations, the strain CIM-726 produced the highest seed cotton yield of 3493 kg ha<sup>-1</sup> followed by CIM-725 having yield of 2892 kg ha<sup>-1</sup> while the standard variety CIM-573 yielded 2624 kg ha<sup>-1</sup> seed cotton yield **(Table 2.7).** 

Table 2.7 Performance of advanced strains in Varietal Trial-3 at two locations

| Strains | Seed cotton yield (kg ha <sup>-1</sup> ) |                    |         | Lint                            | Av. Boll      | Plant                       |
|---------|------------------------------------------|--------------------|---------|---------------------------------|---------------|-----------------------------|
|         | Multan<br>(3/5)*                         | Khanewal<br>(17/5) | Average | Yield<br>(kg ha <sup>-1</sup> ) | weight<br>(g) | Pop.<br>(ha <sup>-1</sup> ) |
| CIM-610 | 2593                                     | 3080               | 2837    | 1143                            | 2.9           | 40888                       |
| CIM-722 | 2737                                     | 2291               | 2514    | 817                             | 3.1           | 39991                       |
| CIM-723 | 2628                                     | 2599               | 2614    | 991                             | 2.8           | 38736                       |
| CIM-725 | 2990                                     | 2794               | 2892    | 1076                            | 3.0           | 39005                       |
| CIM-726 | 3725                                     | 3260               | 3493    | 1369                            | 4.3           | 37301                       |
| CIM-727 | 2802                                     | 2787               | 2795    | 1090                            | 2.9           | 38646                       |
| CIM-728 | 2755                                     | 2890               | 2823    | 1081                            | 2.7           | 39184                       |
| CIM-573 | 2618                                     | 2629               | 2624    | 1057                            | 2.7           | 36853                       |

<sup>\* =</sup> Sowing date 03.05.2017

CD (5%) for seed cotton: Locations (L) = 63.91; Varieties (V) = 127.81; L x V = 180.75

The new strains CIM-610 produced the highest lint percentage of 40.3, followed by CIM-726 having lint percentage values of 39.2 while standard CIM-573 produced 40.3 % of lint **(Table 2.8).** The new strains CIM-722 & CIM-725 produced the longest staple of 31.0 mm, respectively followed by CIM-723 with 30.3 mm while the standards CIM-573 produced 29.8 mm staple length **(Table 2.8).** 

Table 2.8 Lint percentage and staple length of advanced strains in Varietal Trial-3 at two locations

| Strains | Lint (%age) |          |         | Staple length (mm) |          |         |  |
|---------|-------------|----------|---------|--------------------|----------|---------|--|
|         | Multan      | Khanewal | Average | Multan             | Khanewal | Average |  |
| CIM-610 | 39.8        | 40.8     | 40.3    | 29.0               | 30.0     | 29.5    |  |
| CIM-722 | 31.9        | 33.0     | 32.5    | 30.5               | 31.5     | 31.0    |  |
| CIM-723 | 37.5        | 38.2     | 37.9    | 29.8               | 30.8     | 30.3    |  |
| CIM-725 | 36.7        | 37.7     | 37.2    | 30.5               | 31.4     | 31.0    |  |
| CIM-726 | 38.7        | 39.7     | 39.2    | 28.8               | 29.5     | 29.2    |  |
| CIM-727 | 38.5        | 39.5     | 39.0    | 28.3               | 29.4     | 28.9    |  |
| CIM-728 | 37.8        | 38.8     | 38.3    | 27.9               | 28.2     | 28.1    |  |
| CIM-573 | 39.8        | 40.8     | 40.3    | 29.7               | 29.9     | 29.8    |  |

All the new strains possess desirable micronaire values ranging from 4.3 to 4.9  $\mu g$  inch<sup>-1</sup> except CIM-727 & CIM-728 which have Micronaire value above the standard i.e. 5.2 & 5.4  $\mu g$  inch<sup>-1</sup> respectively in comparison to CIM-573 with 4.4  $\mu g$  inch<sup>-1</sup>. The fibre strength of all the new strains and standards is in the desirable range, i.e. 26.7 to 32.7 g/tex **(Table 2.9).** 

Table 2.9 Micronaire value and fibre strength of advanced strains in Varietal Trial-3 at two locations

| Strains | Micron | aire value (μg | inch <sup>-1</sup> ) | Fibre strength (g/tex) |          |         |
|---------|--------|----------------|----------------------|------------------------|----------|---------|
|         | Multan | Khanewal       | Average              | Multan                 | Khanewal | Average |
| CIM-610 | 4.9    | 4.9            | 4.9                  | 30.7                   | 30.8     | 30.8    |
| CIM-722 | 4.5    | 4.6            | 4.6                  | 32.6                   | 32.8     | 32.7    |
| CIM-723 | 4.3    | 4.3            | 4.3                  | 31.6                   | 31.8     | 31.7    |
| CIM-725 | 4.3    | 4.4            | 4.4                  | 32.1                   | 32.6     | 32.4    |
| CIM-726 | 4.5    | 4.6            | 4.6                  | 29.0                   | 29.2     | 29.1    |
| CIM-727 | 5.1    | 5.2            | 5.2                  | 28.8                   | 28.8     | 28.8    |
| CIM-728 | 5.4    | 5.4            | 5.4                  | 26.6                   | 26.7     | 26.7    |
| CIM-573 | 4.4    | 4.4            | 4.4                  | 30.8                   | 30.9     | 30.9    |

### 2.1.4 Varietal Trial-4

## Objective: Testing and evaluation of promising medium long staple *Bt.* strains for the development of commercial varieties

Nine newly bulked medium long staple *Bt.* strains i.e. CIM-636, CIM-637, CIM-638, CIM-640, CIM-644, CIM-645, CIM-646, CIM-672 and CIM-343 were tested against a commercial variety FH-142 at CCRI, Multan and Punjab Seed Corporation Farm, Khanewal. Data on seed cotton yield and other parameters are given in **Tables 2.10, 2.11** and **2.12**.

Average across locations, the strain CIM-638 produced the highest seed cotton yield of 3228 kg ha<sup>-1</sup> followed by CIM-343 having yield of 3160 kg ha<sup>-1</sup> while the standard variety FH-142 yielded 2608 kg ha<sup>-1</sup> seed cotton yield **(Table 2.10).** 

Table 2.10 Performance of advanced strains in Varietal Trial-4 at two locations

| Strains | Seed             | cotton yield (     | kg ha <sup>-1</sup> ) | Lint                            | Av. Boll      | Plant                       |
|---------|------------------|--------------------|-----------------------|---------------------------------|---------------|-----------------------------|
|         | Multan<br>(3/5)* | Khanewal<br>(17/5) | Average               | Yield<br>(kg ha <sup>-1</sup> ) | weight<br>(g) | Pop.<br>(ha <sup>-1</sup> ) |
| CIM-636 | 3220             | 3032               | 3126                  | 1257                            | 3.8           | 39991                       |
| CIM-637 | 2814             | 2507               | 2661                  | 1032                            | 3.4           | 38646                       |
| CIM-638 | 3811             | 2645               | 3228                  | 1262                            | 3.4           | 38377                       |
| CIM-640 | 2484             | 2668               | 2576                  | 1010                            | 3.5           | 37660                       |
| CIM-644 | 2596             | 2363               | 2480                  | 927                             | 3.0           | 40260                       |
| CIM-645 | 2782             | 2650               | 2716                  | 1046                            | 3.0           | 37212                       |
| CIM-646 | 2669             | 3080               | 2875                  | 1150                            | 3.0           | 38108                       |
| CIM-672 | 3067             | 2865               | 2966                  | 1091                            | 3.0           | 41605                       |
| CIM-343 | 3420             | 2900               | 3160                  | 1220                            | 3.3           | 40081                       |
| FH-142  | 2637             | 2578               | 2608                  | 1006                            | 3.4           | 39812                       |

<sup>\* =</sup> Sowing date 03.05.2017

CD (5%) for seed cotton: Locations (L) = 149.67; Varieties (V) = 66.94; L x V = 211.67

The new strains CIM-636 produced the highest lint percentage of 40.2, followed by CIM-646 having lint percentage values of 40.0 while standard FH-142 produced 38.6% of lint **(Table 2.10).** The new strains CIM-672 & CIM-640 produced the longest staple of 29.7 and 29.6 mm, respectively followed by CIM-638 with 29.1 mm while the standards FH-142 produced 27.5 mm staple length **(Table 2.11).** 

Table 2.11 Lint percentage and staple length of advanced strains in Varietal Trial-4 at two locations

| Strains |        | Lint (%age) |         |        | Staple length (mm) |         |  |
|---------|--------|-------------|---------|--------|--------------------|---------|--|
|         | Multan | Khanewal    | Average | Multan | Khanewal           | Average |  |
| CIM-636 | 38.9   | 41.5        | 40.2    | 28.7   | 29.0               | 28.9    |  |
| CIM-637 | 37.7   | 39.9        | 38.8    | 28.8   | 28.7               | 28.8    |  |
| CIM-638 | 39.1   | 39.0        | 39.1    | 29.1   | 29.1               | 29.1    |  |
| CIM-640 | 38.9   | 39.4        | 39.2    | 30.3   | 28.9               | 29.6    |  |
| CIM-644 | 37.2   | 37.6        | 37.4    | 27.8   | 26.3               | 27.1    |  |
| CIM-645 | 39.2   | 37.8        | 38.5    | 28.8   | 28.7               | 28.8    |  |
| CIM-646 | 39.4   | 40.6        | 40.0    | 28.0   | 27.1               | 27.6    |  |
| CIM-672 | 36.3   | 37.2        | 36.8    | 29.6   | 29.7               | 29.7    |  |
| CIM-343 | 38.5   | 38.7        | 38.6    | 29.0   | 28.9               | 29.0    |  |
| FH-142  | 38.6   | 38.5        | 38.6    | 27.3   | 27.6               | 27.5    |  |

All the new strains possess desirable micronaire values ranging from 3.9 to 4.6  $\mu g$  inch<sup>-1</sup> in comparison to FH-142 with 4.5  $\mu g$  inch<sup>-1</sup>. The fibre strength of all the new strains and standards are in the desirable range, i.e. 27.4 to 30.4 g/tex **(Table 2.12).** 

Table 2.12 Micronaire value and fibre strength of advanced strains in Varietal Trial-4 at two locations

| Strains | Micronai | re value (μg i | nch <sup>-1</sup> ) | Fik    | ore strength (g | /tex)   |  |  |  |
|---------|----------|----------------|---------------------|--------|-----------------|---------|--|--|--|
|         | Multan   | Khanewal       | Average             | Multan | Khanewal        | Average |  |  |  |
| CIM-636 | 4.2      | 4.2            | 4.2                 | 29.5   | 29.3            | 29.4    |  |  |  |
| CIM-637 | 4.2      | 4.2            | 4.2                 | 30.1   | 29.6            | 29.9    |  |  |  |
| CIM-638 | 3.9      | 4.3            | 4.1                 | 27.9   | 28.3            | 28.1    |  |  |  |
| CIM-640 | 3.9      | 4.0            | 3.9                 | 30.0   | 29.8            | 29.9    |  |  |  |
| CIM-644 | 4.2      | 3.9            | 4.1                 | 29.6   | 27.9            | 28.8    |  |  |  |
| CIM-645 | 4.2      | 4.2            | 4.2                 | 30.6   | 29.6            | 30.1    |  |  |  |
| CIM-646 | 4.6      | 4.6            | 4.6                 | 29.4   | 27.8            | 28.6    |  |  |  |
| CIM-672 | 4.5      | 4.5            | 4.5                 | 30.0   | 30.7            | 30.4    |  |  |  |
| CIM-343 | 4.6      | 4.3            | 4.5                 | 27.5   | 27.2            | 27.4    |  |  |  |
| FH-142  | 4.3      | 4.6            | 4.5                 | 28.0   | 27.7            | 27.9    |  |  |  |

Sowing date = 03.05.2017;

CD (5%) for seed cotton: Strains = 211.67;

CV %5 = 4.51

### 2.1.5 Varietal Trial-5

## Objective: Testing and evaluation of promising medium long staple *Bt.* strains for the development of commercial varieties

Seven newly bulked medium long staple *Bt.* strains i.e. CIM-641, CIM-642, CIM-643, CIM-663, CIM-669, CIM-670 & CIM-671 were tested against two commercial varieties FH-142 and *Bt.*CIM-602 at CCRI, Multan and Punjab Seed Corporation Farm, Khanewal. Data on seed cotton yield and other parameters are given in **Tables 2.13**, **2.14** and **2.15**.

Averaged across locations, the strain CIM-670 produced the highest seed cotton yield of 3657 kg ha<sup>-1</sup> followed by CIM-642 having yield of 3554 kg ha<sup>-1</sup> while the standard variety FH-142 and CIM-602 yielded 2989 kg ha<sup>-1</sup> and 2919 kg ha<sup>-1</sup> seed cotton yield **(Table 2.13).** 

Table 2.13 Performance of advanced strains in Varietal Trial-5 at two locations

| Strains | Seed             | Seed cotton yield (kg ha <sup>-1</sup> ) |         |                                 | Av. Boll      | Plant                       |
|---------|------------------|------------------------------------------|---------|---------------------------------|---------------|-----------------------------|
|         | Multan<br>(3/5)* | Khanewal<br>(17/5)                       | Average | Yield<br>(kg ha <sup>-1</sup> ) | weight<br>(g) | Pop.<br>(ha <sup>-1</sup> ) |
| CIM-641 | 3425             | 3085                                     | 3255    | 1351                            | 3.0           | 35149                       |
| CIM-642 | 3750             | 3357                                     | 3554    | 1422                            | 2.4           | 35777                       |
| CIM-643 | 3027             | 2511                                     | 2769    | 1022                            | 2.7           | 32101                       |
| CIM-663 | 3755             | 3041                                     | 3398    | 1312                            | 3.8           | 37391                       |
| CIM-669 | 2259             | 1851                                     | 2055    | 832                             | 2.8           | 26003                       |
| CIM-670 | 4072             | 3242                                     | 3657    | 1459                            | 2.8           | 38915                       |
| CIM-671 | 3568             | 2826                                     | 3197    | 1218                            | 3.2           | 36584                       |
| CIM-602 | 3255             | 2582                                     | 2919    | 1095                            | 2.9           | 39902                       |
| FH-142  | 3223             | 2755                                     | 2989    | 1193                            | 3.5           | 40260                       |

<sup>\* =</sup> Sowing date 03.05.2017

CD (5%) for seed cotton: Locations (L) = 39.12; Varieties (V) = 65.04; L x V = 110.02

The new strain CIM-641 produced the highest lint percentage of 41.5 followed by CIM-669 having lint percentage values of 40.5 while standard FH-142 and CIM-602 produced 39.9% and 37.5 of lint respectively (Table 2.14). The new strain CIM-643 produced the longest staple of 28.8 mm followed by CIM-642 and CIM-671 with 28.6 mm while the standards FH-142 and CIM-602 produced 27.4 mm and 27.7 mm staple length (Table 2.14).

Table 2.14 Lint percentage and staple length of advanced strains in Varietal Trial-5 at two locations

| Strains | Lint (%age) |          |         | Staple length (mm) |          |         |
|---------|-------------|----------|---------|--------------------|----------|---------|
|         | Multan      | Khanewal | Average | Multan             | Khanewal | Average |
| CIM-641 | 40.2        | 42.8     | 41.5    | 27.6               | 26.0     | 26.8    |
| CIM-642 | 38.4        | 41.6     | 40.0    | 29.0               | 28.2     | 28.6    |
| CIM-643 | 34.3        | 39.4     | 36.9    | 29.4               | 28.2     | 28.8    |
| CIM-669 | 39.5        | 41.5     | 40.5    | 26.8               | 27.2     | 27.0    |
| CIM-670 | 36.6        | 43.1     | 39.9    | 26.7               | 26.3     | 26.5    |
| CIM-671 | 35.2        | 40.9     | 38.1    | 29.1               | 28.0     | 28.6    |
| CIM-663 | 37.3        | 39.9     | 38.6    | 25.5               | 26.4     | 26.0    |
| CIM-602 | 35.5        | 39.5     | 37.5    | 28.4               | 26.9     | 27.7    |
| FH-142  | 39.6        | 40.2     | 39.9    | 26.1               | 28.7     | 27.4    |

All the new strains possess micronaire values ranging from 4.0 to  $5.0~\mu g$  inch<sup>-1</sup> in comparison to FH-142 and CIM-602 with 4.4  $\mu g$  inch<sup>-1</sup> and 4.0  $\mu g$  inch<sup>-1</sup>. The fibre strength of all the new strains and standards is in the desirable range, i.e. 26.9 to 30.8 g/tex **(Table 2.15).** 

**Table 2.15** Micronaire value and fibre strength of advanced strains in Varietal Trial-5 at two locations

| Strains | Micronai | re value (μg i | nch <sup>-1</sup> ) | Fib    | re strength (g | /tex)   |
|---------|----------|----------------|---------------------|--------|----------------|---------|
|         | Multan   | Khanewal       | Average             | Multan | Khanewal       | Average |
| CIM-641 | 4.5      | 4.7            | 4.6                 | 28.3   | 26.4           | 27.4    |
| CIM-642 | 4.2      | 4.2            | 4.2                 | 31.0   | 30.0           | 30.5    |
| CIM-643 | 5.1      | 4.8            | 5.0                 | 30.2   | 30.4           | 30.3    |
| CIM-669 | 4.3      | 4.0            | 4.2                 | 28.6   | 28.4           | 28.5    |
| CIM-670 | 5.2      | 4.6            | 4.9                 | 28.5   | 27.8           | 28.2    |
| CIM-671 | 4.8      | 4.0            | 4.4                 | 31.4   | 30.1           | 30.8    |
| CIM-663 | 5.3      | 4.7            | 5.0                 | 26.3   | 27.4           | 26.9    |
| CIM-602 | 4.1      | 3.9            | 4.0                 | 29.4   | 28.0           | 28.7    |
| FH-142  | 4.8      | 4.0            | 4.4                 | 27.4   | 30.2           | 28.8    |

Sowing date = 03.05.2017;

CD (5%) for seed cotton: Strains = 473.441; CV %5. = 8.12

#### 2.1.6 **Varietal Trial-6**

#### Testing and evaluation of promising medium long staple Non- Bt. Objective: strains for the development of commercial varieties

Eight newly bulked medium long staple strains i.e. CIM-717, CIM-729, CIM-730, CIM-731, CIM-732, CIM-733, CIM-734 and CIM-735 were tested against a commercial variety CIM-620 at CCRI, Multan and Punjab Seed Corporation Farm, Khanewal. Data on seed cotton yield and other parameters are given in Tables 2.16, 2.17 and 2.18.

Average across locations, the strain CIM-733 produced the highest seed cotton yield of 3539 kg ha<sup>-1</sup> followed by CIM-732 having yield of 3461 kg ha<sup>-1</sup> while the standard variety CIM-620 yielded 2664 kg ha<sup>-1</sup> seed cotton yield (Table 2.16).

Table 2.16 Performance of advanced strains in Varietal Trial-6 at two locations

| Strains | Seed             | cotton yield (     | kg ha <sup>-1</sup> ) | Lint                            | Av. Boll      | Plant                       |
|---------|------------------|--------------------|-----------------------|---------------------------------|---------------|-----------------------------|
|         | Multan<br>(3/5)* | Khanewal<br>(17/5) | Average               | Yield<br>(kg ha <sup>-1</sup> ) | weight<br>(g) | Pop.<br>(ha <sup>-1</sup> ) |
| CIM-717 | 3855             | 2841               | 3348                  | 1373                            | 3.3           | 39095                       |
| CIM-729 | 3569             | 2640               | 3105                  | 1220                            | 2.9           | 39722                       |
| CIM-730 | 3790             | 3085               | 3438                  | 1303                            | 2.9           | 40888                       |
| CIM-731 | 3508             | 2640               | 3074                  | 1196                            | 2.9           | 36046                       |
| CIM-732 | 3794             | 3128               | 3461                  | 1291                            | 3.2           | 37481                       |
| CIM-733 | 3807             | 3271               | 3539                  | 1320                            | 2.5           | 33177                       |
| CIM-734 | 3169             | 2367               | 2768                  | 1116                            | 2.5           | 35329                       |
| CIM-735 | 3030             | 2625               | 2828                  | 1063                            | 2.7           | 32639                       |
| CIM-620 | 2845             | 2482               | 2664                  | 980                             | 2.6           | 39274                       |

<sup>\* =</sup> Sowing date 03.05.2017

CD (5%) for seed cotton: Locations (L) = 39.12; Varieties (V) = 65.04; L x V = 110.02

The new strains CIM-717 produced the highest lint percentage of 41.0, followed by CIM-734 having lint percentage values of 40.3 while standard CIM-620 produced 36.8% of lint (Table 2.17). The new strains CIM-733 produced the longest staple of 28.7 mm followed by CIM-735 with 27.7 mm while the standards CIM-620 produced 28.0 mm staple length (Table 2.17).

Table 2.17 Lint percentage and staple length of advanced strains in Varietal Trial-6 at two locations

| Strains |        | Lint (%age) |         | Staple length (mm) |          |         |  |
|---------|--------|-------------|---------|--------------------|----------|---------|--|
|         | Multan | Khanewal    | Average | Multan             | Khanewal | Average |  |
| CIM-717 | 40.9   | 41.0        | 41.0    | 27.0               | 25.8     | 26.4    |  |
| CIM-729 | 38.0   | 40.6        | 39.3    | 28.1               | 26.3     | 27.2    |  |
| CIM-730 | 36.7   | 39.1        | 37.9    | 26.7               | 27.0     | 26.9    |  |
| CIM-731 | 37.8   | 39.9        | 38.9    | 26.8               | 27.1     | 27.0    |  |
| CIM-732 | 33.8   | 40.8        | 37.3    | 27.3               | 26.7     | 27.0    |  |
| CIM-733 | 36.7   | 37.9        | 37.3    | 28.4               | 29.0     | 28.7    |  |
| CIM-734 | 38.3   | 42.2        | 40.3    | 28.1               | 26.4     | 27.3    |  |
| CIM-735 | 36.2   | 38.9        | 37.6    | 27.7               | 27.6     | 27.7    |  |
| CIM-620 | 35.3   | 38.3        | 36.8    | 28.3               | 27.6     | 28.0    |  |

All the new strains possess desirable micronaire values ranging from 4.2 to 4.9  $\mu$ g inch<sup>-1</sup> in comparison to CIM-620 with 4.7  $\mu$ g inch<sup>-1</sup>. The fibre strength of all the new strains and standards is in the desirable range, i.e. 26.6 to 30.1 g/tex **(Table 2.18).** 

Table 2.18 Micronaire value and fibre strength of advanced strains in Varietal Trial-6 at two locations

| Strains | Micron | aire value (μg | inch <sup>-1</sup> ) | Fibre strength (g/tex) |          |         |  |  |  |  |
|---------|--------|----------------|----------------------|------------------------|----------|---------|--|--|--|--|
|         | Multan | Khanewal       | Average              | Multan                 | Khanewal | Average |  |  |  |  |
| CIM-717 | 4.9    | 4.6            | 4.8                  | 26.2                   | 26.9     | 26.6    |  |  |  |  |
| CIM-729 | 5.3    | 4.4            | 4.9                  | 28.3                   | 28.4     | 28.4    |  |  |  |  |
| CIM-730 | 4.6    | 3.8            | 4.2                  | 27.5                   | 29.0     | 28.3    |  |  |  |  |
| CIM-731 | 5.0    | 4.3            | 4.7                  | 27.3                   | 28.2     | 27.8    |  |  |  |  |
| CIM-732 | 5.4    | 4.3            | 4.9                  | 28.0                   | 28.5     | 28.3    |  |  |  |  |
| CIM-733 | 4.9    | 4.4            | 4.7                  | 28.9                   | 31.2     | 30.1    |  |  |  |  |
| CIM-734 | 4.8    | 4.6            | 4.7                  | 28.7                   | 28.7     | 28.7    |  |  |  |  |
| CIM-735 | 4.4    | 4.4            | 4.4                  | 29.9                   | 29.6     | 29.8    |  |  |  |  |
| CIM-620 | 4.7    | 4.6            | 4.7                  | 29.8                   | 29.6     | 29.7    |  |  |  |  |

### 2.1.7 Micro Varietal Trial-1

## Objective: Testing of newly bulked long staple *Bt.* strains to develop Commercial varieties

Nine newly bulked strains numbering from 1/17 to 9/17 were tested against commercial variety *Bt*.CIM-602 at CCRI, Multan. The new strain 5/17 surpassed all the strains and standard variety in seed cotton yield by producing 3767 kg ha<sup>-1</sup>, followed by 9/17 with 3659 kg ha<sup>-1</sup> and 3/17 having 3561 kg ha<sup>-1</sup> compared with 3033 yield of *Bt*.CIM-602 (**Table 2.19**).

The strain 9/17 produced the highest lint percentage of 41.1, followed by 38.9 percent lint in 1/17 while the commercial variety Bt.CIM-602 produced the lint percentage of 38.2. The strain 6/17 produced the longest staple of 30.9 mm, followed by 30.0 mm in 7/17 compared with the fibre length of 28.0 mm in commercial variety Bt.CIM-602. All the strains 3, 4 & 5 were having undesirable micronaire values while the remaining all the strains were having micronaire value ranging from 4.1 to 4.9  $\mu$ g inch<sup>-1</sup>. The strain 7/17 maintained the maximum fibre strength of 31.6 g/tex, followed by 31.0 g/tex in 6/17 while standard Bt.CIM-602 had 29.5 g/tex.

Table 2.19 Performance of advanced strains in Micro Varietal Trial-1 at CCRI, Multan

| Strains | Seed<br>Cotton<br>Yield<br>(kg ha <sup>-1</sup> ) | Lint<br>Yield<br>(kg ha <sup>-1</sup> ) | Lint<br>(% age) | Staple<br>length<br>(mm) | Micro-<br>naire value<br>(μg inch <sup>-1</sup> ) | Fibre<br>strength<br>(g/tex) | Av.<br>boll<br>wt. (g) | Plant<br>Pop.<br>(ha <sup>-1</sup> ) |
|---------|---------------------------------------------------|-----------------------------------------|-----------------|--------------------------|---------------------------------------------------|------------------------------|------------------------|--------------------------------------|
| 1/17    | 2692                                              | 1047                                    | 38.9            | 28.9                     | 4.3                                               | 28.1                         | 2.7                    | 39991                                |
| 2       | 2729                                              | 1072                                    | 39.3            | 28.4                     | 4.1                                               | 30.0                         | 2.7                    | 40350                                |
| 3       | 3561                                              | 1318                                    | 37.0            | 28.0                     | 5.0                                               | 29.1                         | 3.4                    | 41247                                |
| 4       | 3391                                              | 1282                                    | 37.8            | 27.8                     | 5.0                                               | 28.2                         | 3.4                    | 41426                                |
| 5       | 3767                                              | 1454                                    | 38.6            | 27.5                     | 5.1                                               | 28.2                         | 3.0                    | 39453                                |
| 6       | 3279                                              | 1220                                    | 37.2            | 30.9                     | 4.3                                               | 31.0                         | 3.6                    | 39812                                |
| 7       | 3080                                              | 1192                                    | 38.7            | 30.0                     | 4.9                                               | 31.6                         | 3.0                    | 42143                                |
| 8       | 3512                                              | 1306                                    | 37.2            | 28.5                     | 4.5                                               | 29.1                         | 3.6                    | 41247                                |
| 9/17    | 3659                                              | 1504                                    | 41.1            | 29.0                     | 4.2                                               | 28.7                         | 3.4                    | 41091                                |
| CIM-602 | 3033                                              | 1186                                    | 38.2            | 28.0                     | 4.4                                               | 29.5                         | 2.8                    | 40529                                |

Sowing date = 13.05.2017; CD (5%) for seed cotton: Strains = 236.55; CV % = 7.20

### 2.1.8 Micro Varietal Trial-2

## Objective: Testing of newly bulked medium-long staple *Bt.* strains to develop commercial varieties

Seven newly bulked strains numbering from 929/17 to 935/17 were tested against commercial variety *Bt.*CIM-602 at CCRI, Multan. The new strain 931/17 surpassed all the strains and standard variety in seed cotton yield by producing 3956 kg ha<sup>-1</sup>, followed by 930/17 with 3813 kg ha<sup>-1</sup> and 933/17 having 3645 kg ha<sup>-1</sup> compared with 2836 yield of *Bt.*CIM-602 **(Table 2.20).** 

The strain 934/17 produced the highest lint percentage of 43.3, followed by 38.7 percent lint in 931/17 while the commercial variety Bt.CIM-602 produced the lint percentage of 37.2. The strain 930/17 produced the longest staple of 28.4 mm, followed by 28.2 mm in 935/17 compared with the fibre length of 28.3 mm in commercial variety Bt.CIM-602. All the strains have micronaire values ranging from 4.1 to 5.7  $\mu$ g inch<sup>-1</sup>. The strain 932/17 maintained the maximum fibre strength of 28.4 g/tex, followed by 28.2 g/tex in 930/17 while standard Bt.CIM-602 had 29.9 g/tex.

Table 2. 20 Performance of advanced strains in Micro-Varietal Trial-2 at CCRI, Multan

| Strains | Seed<br>Cotton<br>Yield<br>(kg ha <sup>-1</sup> ) | Lint<br>Yield<br>(kg ha <sup>-1</sup> ) | Lint<br>(% age) | Staple<br>Length<br>(mm) | Micro-<br>naire value<br>(μg inch <sup>-1</sup> ) | Fibre<br>Strength<br>(g/tex) | Av.<br>boll<br>wt. (g) | Plant<br>Pop.<br>(ha <sup>-1</sup> ) |
|---------|---------------------------------------------------|-----------------------------------------|-----------------|--------------------------|---------------------------------------------------|------------------------------|------------------------|--------------------------------------|
| 929/17  | 2349                                              | 860                                     | 36.6            | 26.9                     | 5.1                                               | 25.9                         | 2.7                    | 37481                                |
| 930     | 3813                                              | 1380                                    | 36.2            | 28.4                     | 5.3                                               | 28.2                         | 2.7                    | 34253                                |
| 931     | 3956                                              | 1531                                    | 38.7            | 26.3                     | 5.7                                               | 25.4                         | 2.8                    | 38198                                |
| 932     | 3235                                              | 1203                                    | 37.2            | 27.5                     | 4.6                                               | 28.4                         | 2.1                    | 37481                                |
| 933     | 3645                                              | 1403                                    | 38.5            | 27.4                     | 5.7                                               | 26.7                         | 3.0                    | 36405                                |
| 934     | 3519                                              | 1524                                    | 43.3            | 27.0                     | 5.0                                               | 26.9                         | 3.0                    | 38377                                |
| 935/17  | 3270                                              | 1194                                    | 36.5            | 28.2                     | 4.9                                               | 27.5                         | 3.2                    | 31921                                |
| CIM-602 | 2836                                              | 998                                     | 37.2            | 28.3                     | 4.1                                               | 29.9                         | 2.8                    | 40350                                |

Sowing date = 03.05.2017; CD (5%) for seed cotton = 185.606; CV. % = 3.18

### 2.1.9 Micro Varietal Trial-3

## Objective: Testing of newly bulked medium-long staple strains to develop commercial varieties

Eight newly bulked strains numbering from 1412/17 to 1419/17 were tested against commercial variety CIM-602 at CCRI, Multan. Data presented in **Table 2.21** indicated that the new strain 1417/17 surpassed all the new strains yielding 3283 kg ha<sup>-1</sup>, followed by strains 1413/17 and 1419/17 which produced 2849 and 2332 kg ha<sup>-1</sup> seed cotton respectively while the standard CIM-602 yielding 1951 kg ha<sup>-1</sup>. The new strain 1418/17 produced the highest lint percentage of 39.2 followed by 38.9% in 1419/17, 38.3% in 1414/17 in comparison to CIM-602 having 37.4 lint percentages. The strains 1419/17 has the longest staple of 31.4 mm followed by 1412/17 and 1415/17 with the staple of 29.8 mm and 29.6 mm and 29.4 mm in 1413/17 compared with the staple length of 28.1 mm in standard variety CIM-602. The genotypes 1415/17 and 1417/17 have undesirable micronaire values while all other have desirable micronaire value ranging from 4.3 to 4.9  $\mu$ g inch<sup>-1</sup>. All the strains were showing fibre strengths ranging from 29.3 to 33.6 g/tex.

Table 2.21 Performance of advanced strains in Micro-Varietal Trial-3 at CCRI, Multan

| Strains | Seed      | Lint                   | Lint    | Staple | Micronaire               | Fibre    | Av.    | Plant               |
|---------|-----------|------------------------|---------|--------|--------------------------|----------|--------|---------------------|
|         | cotton    | Yield                  | (% age) | length | value                    | Strength | boll   | Pop.                |
|         | yield     | (kg ha <sup>-1</sup> ) |         | (mm)   | (µg inch <sup>-1</sup> ) | (g/tex)  | weight | (ha <sup>-1</sup> ) |
|         | (kg ha⁻¹) |                        |         |        |                          |          | (g)    |                     |
| 1412/17 | 1892      | 708                    | 37.4    | 29.8   | 4.6                      | 31.4     | 2.6    | 40171               |
| 1413    | 2849      | 1006                   | 35.3    | 29.4   | 4.6                      | 30.6     | 3.1    | 36225               |
| 1414    | 1686      | 646                    | 38.3    | 28.2   | 4.6                      | 29.7     | 2.9    | 29590               |
| 1415    | 1749      | 642                    | 36.7    | 29.6   | 5.1                      | 30.3     | 3.2    | 32459               |
| 1416    | 2051      | 775                    | 37.8    | 29.1   | 4.8                      | 30.4     | 3.4    | 25824               |
| 1417    | 3283      | 1198                   | 36.5    | 28.9   | 5.2                      | 29.4     | 2.5    | 35867               |
| 1418    | 1865      | 731                    | 39.2    | 28.5   | 4.9                      | 29.9     | 3.0    | 39991               |
| 1419/17 | 2332      | 907                    | 38.9    | 31.4   | 4.5                      | 33.6     | 3.1    | 31921               |
| CIM-602 | 1951      | 730                    | 37.4    | 28.1   | 4.3                      | 29.3     | 2.7    | 34432               |

Sowing date = 24.05.2017;

### 2.1.10 Micro-Varietal Trial-4

## Objective: Testing of medium long staple *Bt.* strains to develop commercial varieties

Eight newly bulked elite *Bt.* strains from 2803/17 to 2810/17 were tested against commercial variety *Bt.*CIM-602 at CCRI, Multan. Data on yield and other parameters are presented in **Table 2.22**.

The strain 2804/17 out-yielded all the strains and standard variety by producing 3579 kg ha<sup>-1</sup> seed cotton, followed by 2803/17 having seed cotton yields of 3493 against commercial variety *Bt*.CIM-602 which produced 2517 kg ha<sup>-1</sup> seed cotton. The strain 2810/17 produced the higher lint percentage of 39.4% followed by 2809/17 with 38.8 and 2803/17 with 38.0 %.compared with that of 36.7% by *Bt*.CIM-602.

The strain 2807/17 produced the longest staple of 29.0 mm, followed by the 28.8 mm of strain 2810/17 compared with the 28.0 mm of Bt.CIM-602. All the strains have desirable micronaire values ranging from 3.7 to 4.9  $\mu g$  inch<sup>-1</sup>. The fibre strength of all the new strains is observed within the range i.e. 29.5 to 30.7.

Table 2.22 Performance of advanced strains in Micro-Varietal Trial-4 at CCRI, Multan

| Strains | Seed<br>Cotton<br>Yield<br>(kg ha <sup>-1</sup> ) | Lint<br>Yield<br>(kg ha <sup>-1</sup> ) | Lint<br>(% age) | Staple<br>Length<br>(mm) | Micronaire<br>value<br>(μg inch <sup>-1</sup> ) | Fibre<br>Strength<br>(g/tex) | Av.<br>boll<br>weight<br>(g) | Plant<br>pop.<br>(ha <sup>-1</sup> ) |
|---------|---------------------------------------------------|-----------------------------------------|-----------------|--------------------------|-------------------------------------------------|------------------------------|------------------------------|--------------------------------------|
| 2803/17 | 3493                                              | 1327                                    | 38.0            | 28.4                     | 4.5                                             | 30.1                         | 3.5                          | 34073                                |
| 2804    | 3579                                              | 1267                                    | 35.4            | 27.9                     | 4.2                                             | 30.0                         | 3.3                          | 36225                                |
| 2805    | 3392                                              | 1272                                    | 37.5            | 27.8                     | 4.7                                             | 29.9                         | 3.1                          | 38198                                |
| 2806    | 3470                                              | 1301                                    | 37.5            | 28.6                     | 4.9                                             | 30.0                         | 2.9                          | 35329                                |
| 2807    | 3039                                              | 1143                                    | 37.6            | 29.0                     | 3.7                                             | 30.7                         | 2.7                          | 33894                                |
| 2808    | 3063                                              | 1078                                    | 35.2            | 28.6                     | 4.5                                             | 30.2                         | 2.6                          | 39633                                |
| 2809    | 2716                                              | 1054                                    | 38.8            | 28.1                     | 4.5                                             | 30.2                         | 2.8                          | 38198                                |
| 2810/17 | 3381                                              | 1332                                    | 39.4            | 28.8                     | 4.5                                             | 29.9                         | 2.6                          | 37481                                |
| CIM-602 | 2517                                              | 924                                     | 36.7            | 28.0                     | 4.3                                             | 29.5                         | 2.5                          | 36943                                |

Sowing date = 23.05.2017;

CD (5%) for seed cotton = 552.34;

CV. % = 10.02

### 2.1.11 Micro-Varietal Trial-5

## Objective: Testing of medium long staple Bt. strains to develop commercial varieties

Eight newly bulked elite strains 2811/17 to 2818/17 were tested against commercial variety *Bt.*CIM-602 at CCRI, Multan. Data on yield and other parameters are presented in **Table 2.23.** 

The strain 2811/17 out-yielded all the strains and standard variety by producing 3778 kg ha<sup>-1</sup> seed cotton, followed by 2814/17 and 2818/17 having seed cotton yields of 3455 and 3419 kg ha<sup>-1</sup>, respectively against commercial variety *Bt.*CIM-602 which produced 2829 kg ha<sup>-1</sup> seed cotton. The strains 2812/17 and 2813/16 produced the higher lint percentage values of 39.6 and 38.4 respectively compared with that of 36.1% by *Bt.*CIM-602.

The strain 2811/17 produced the longest staple of 29.1 mm, followed by 28.7 mm in 2814/17 compared with the fibre length of 27.3 mm in commercial variety Bt.CIM-602. All strains have desirable micronaire values ranging from 4.4 to 4.8  $\mu g$  inch<sup>-1</sup> except 2818/17 & 2814/17 which have 5.0 & 5.2  $\mu g$  inch<sup>-1</sup> respectively. The strain 2811/17 maintained the maximum fibre strength of 29.7 g/tex, followed by 2814/17 with 29.4 g/tex while standard Bt.CIM-602 had 28.0 g/tex fibre strength.

Table 2.23 Performance of advanced strains in Micro-Varietal Trial-5 at CCRI, Multan

| Strains  | Seed<br>Cotton<br>Yield<br>(kg ha <sup>-1</sup> ) | Lint<br>Yield<br>(kg ha <sup>-1</sup> ) | Lint<br>(% age) | Staple<br>Length<br>(mm) | Micronaire<br>value<br>(μg inch <sup>-1</sup> ) | Fibre<br>Strength<br>(g/tex) | Av.<br>boll<br>weight<br>(g) | Plant<br>pop.<br>(ha <sup>-1</sup> ) |
|----------|---------------------------------------------------|-----------------------------------------|-----------------|--------------------------|-------------------------------------------------|------------------------------|------------------------------|--------------------------------------|
| 2811/17  | 3778                                              | 1424                                    | 37.7            | 29.1                     | 4.7                                             | 29.7                         | 2.5                          | 36943                                |
| 2812     | 3006                                              | 1190                                    | 39.6            | 27.5                     | 4.7                                             | 29.1                         | 2.7                          | 32997                                |
| 2813     | 3324                                              | 1276                                    | 38.4            | 28.0                     | 4.7                                             | 29.3                         | 2.4                          | 37660                                |
| 2814     | 3455                                              | 1258                                    | 36.4            | 28.7                     | 5.2                                             | 29.4                         | 2.4                          | 38377                                |
| 2815     | 3275                                              | 1133                                    | 34.6            | 27.3                     | 4.8                                             | 28.8                         | 2.5                          | 37122                                |
| 2816     | 3222                                              | 1157                                    | 35.9            | 28.6                     | 4.8                                             | 29.2                         | 2.6                          | 37301                                |
| 2817     | 3042                                              | 1110                                    | 36.5            | 27.2                     | 4.6                                             | 28.2                         | 2.2                          | 38377                                |
| 2818/17  | 3419                                              | 1241                                    | 36.3            | 28.4                     | 5.0                                             | 29.3                         | 2.4                          | 35329                                |
| CIM -602 | 2829                                              | 1021                                    | 36.1            | 27.3                     | 4.4                                             | 28.0                         | 2.5                          | 38198                                |

Sowing date = 23.05.2017;

CD (5%) for seed cotton = 380.06; CV. % = 6.73

#### 2.1.12 Micro-Varietal Trial-6

### Objective: Testing of long staple Bt. strains to develop commercial varieties

Eleven newly bulked elite strains (3192/17 to 3202/17) were tested against commercial variety Bt.CIM-602 at CCRI, Multan. Data on yield and other parameters are presented in Table **2.24.** 

The strain 3199/17 out-yielded all the strains and standard variety by producing 3742 kg ha<sup>-1</sup> seed cotton, followed by 3192/17 and 3196/17 having seed cotton yields of 3415 and 3111 kg ha<sup>-1</sup>, respectively against commercial variety *Bt.*CIM-602 which produced 2335 kg ha<sup>-1</sup> seed cotton. The strains 3197/17 produced the higher lint percentage values of 39.5 followed by 3198/17 and 3199/17 with 39.3% lint compared with that of 36.7% by *Bt.*CIM-602.

The strain 3202/17 produced the longest staple of 31.1 mm, followed by 30.5 mm in 3200/17 compared with the staple length of 28.4 mm in commercial variety *Bt*.CIM-602. All strains have desirable micronaire values raging from 4.0 mm to 4.9 mm. The strain 3202/17 produced the maximum fibre strength (32.8 g/tex) followed by 32.4 g/tex of 3200/17 as compared to the 30.0 g/tex of standard Bt. CIM-602.

Table 2.24 Performance of advanced strains in Micro-Varietal Trial-6 at CCRI, Multan

| Strains | Seed<br>Cotton<br>Yield<br>(kg ha <sup>-1</sup> ) | Lint<br>Yield<br>(kg ha <sup>-1</sup> ) | Lint<br>(% age) | Staple<br>Length<br>(mm) | Micronaire<br>value<br>(μg inch <sup>-1</sup> ) | Fibre<br>Strength<br>(g/tex) | Av.<br>boll<br>weight<br>(g) | Plant<br>pop.<br>(ha⁻¹) |
|---------|---------------------------------------------------|-----------------------------------------|-----------------|--------------------------|-------------------------------------------------|------------------------------|------------------------------|-------------------------|
| 3192/17 | 3415                                              | 1274                                    | 37.3            | 29.6                     | 4.5                                             | 31.4                         | 2.6                          | 39633                   |
| 3193    | 2927                                              | 1103                                    | 37.7            | 28.6                     | 4.6                                             | 30.5                         | 2.8                          | 38557                   |
| 3194    | 2680                                              | 1018                                    | 38.0            | 29.0                     | 4.5                                             | 29.4                         | 2.7                          | 36405                   |
| 3195    | 2562                                              | 989                                     | 38.6            | 29.3                     | 4.7                                             | 31.6                         | 2.9                          | 39453                   |
| 3196    | 3111                                              | 1173                                    | 37.7            | 30.0                     | 4.5                                             | 30.9                         | 3.2                          | 41247                   |
| 3197    | 2468                                              | 975                                     | 39.5            | 29.7                     | 4.9                                             | 31.3                         | 2.3                          | 34791                   |
| 3198    | 3059                                              | 1202                                    | 39.3            | 30.0                     | 4.6                                             | 31.8                         | 2.5                          | 39633                   |
| 3199    | 3742                                              | 1471                                    | 39.3            | 30.0                     | 4.8                                             | 31.8                         | 2.6                          | 41067                   |
| 3200    | 2937                                              | 1078                                    | 36.7            | 30.5                     | 4.7                                             | 32.4                         | 3.2                          | 39274                   |
| 3201    | 2488                                              | 950                                     | 38.2            | 29.2                     | 4.5                                             | 31.5                         | 2.6                          | 41785                   |
| 3202/17 | 2828                                              | 1041                                    | 36.8            | 31.1                     | 4.0                                             | 32.8                         | 2.7                          | 41247                   |
| CIM-602 | 2335                                              | 857                                     | 36.7            | 28.4                     | 4.5                                             | 30.0                         | 2.8                          | 36584                   |

Sowing date: 23.05.2017, CD (5%) for seed cotton: Strains = 282.75, CV% = 5.80

### 2.1.13 Micro-Varietal Trial-7

## Objective: Testing of medium long staple *Bt.* strains with high lint percentage to develop commercial varieties

Ten newly bulked elite strains (3203/17 to 3212/17) were tested against commercial variety *Bt*.CIM-602 at CCRI, Multan. Data on yield and other parameters are presented in **Table 2.25**.

The strain 3207/17 out-yielded all the strains and standard variety by producing 4011 kg ha<sup>-1</sup> seed cotton, followed by 3211/17 and 3210/17 having seed cotton yields of 3885 and 3641 kg ha<sup>-1</sup>, respectively against commercial variety *Bt.*CIM-602 which produced 2507 kg ha<sup>-1</sup> seed cotton. The strains 3203/17 produced the maximum lint percentage values of 38.8 followed by 3205/17 which produced 38.3% lint and 37.2% by *Bt.*CIM-602.

The strains 3208/17 produced the longest staple of 30.5 mm, followed by 30.4 mm in 3207/17 compared with the fibre length of 27.7 mm in commercial variety *Bt*.CIM-602. All strains have desirable micronaire values ranging from 4.2 to 4.9 except 3203/17 &3204/17. The strain 3208/17 maintained the maximum fibre strength of 31.4 g/tex, followed by 31.1 g/tex in 3210/17 while standard *Bt*.CIM-602 had 29.6 g/tex fibre strength.

Table 2.25 Performance of advanced strains in Micro-Varietal Trial-7 at CCRI, Multan

| Strains | Seed<br>Cotton<br>Yield<br>(kg ha <sup>-1</sup> ) | Lint<br>Yield<br>(kg ha <sup>-1</sup> ) | Lint<br>(% age) | Staple<br>Length<br>(mm) | Micronaire<br>value<br>(μg inch <sup>-1</sup> ) | Fibre<br>Strength<br>(g/tex) | Av.<br>boll<br>weight<br>(g) | Plant<br>pop.<br>(ha <sup>-1</sup> ) |
|---------|---------------------------------------------------|-----------------------------------------|-----------------|--------------------------|-------------------------------------------------|------------------------------|------------------------------|--------------------------------------|
| 3203/17 | 2653                                              | 1029                                    | 38.8            | 28.0                     | 5.0                                             | 28.3                         | 2.6                          | 37301                                |
| 3204    | 1976                                              | 749                                     | 37.9            | 28.1                     | 5.2                                             | 28.5                         | 2.6                          | 35867                                |
| 3205    | 3183                                              | 1219                                    | 38.3            | 27.7                     | 4.6                                             | 28.7                         | 2.7                          | 39633                                |
| 3206    | 2883                                              | 1096                                    | 38.0            | 29.2                     | 4.2                                             | 30.5                         | 2.7                          | 37122                                |
| 3207    | 4011                                              | 1424                                    | 37.5            | 30.4                     | 4.9                                             | 30.3                         | 3.3                          | 39095                                |
| 3208    | 2795                                              | 1048                                    | 37.5            | 30.5                     | 4.8                                             | 31.4                         | 3.0                          | 36763                                |
| 3209    | 3441                                              | 1297                                    | 37.7            | 29.4                     | 4.8                                             | 29.0                         | 3.3                          | 37481                                |
| 3210    | 3641                                              | 1365                                    | 37.5            | 29.7                     | 4.9                                             | 31.1                         | 2.9                          | 36763                                |
| 3211    | 3885                                              | 1480                                    | 38.1            | 29.7                     | 4.8                                             | 29.3                         | 3.0                          | 36046                                |
| 3212/17 | 2457                                              | 936                                     | 38.1            | 28.7                     | 4.9                                             | 30.2                         | 2.2                          | 33356                                |
| CIM-602 | 2507                                              | 933                                     | 37.2            | 27.7                     | 4.4                                             | 29.6                         | 2.5                          | 38736                                |

Sowing date: 23.05.2017; CD (5%) for seed cotton: Strains = 402.32; CV% = 7.77

### 2.1.14 Zonal Varietal Trial-1

### Objective: Testing of promising strains.

Five promising strains were evaluated at CCRI, Multan. Data presented in **Table 2.26** revealed that V-5 produced the maximum seed cotton yield of 5165 kg ha<sup>-1</sup>, followed by V-1 with 4573 kg ha<sup>-1</sup> while V-2 produced lowest seed cotton yield of 2044 kg ha<sup>-1</sup>.

Table 2.26 Performance of new strains in Zonal Varietal Trial-1 at CCRI, Multan

| Strains | Seed cotton yield (kg ha-1) |
|---------|-----------------------------|
| V-1     | 4573                        |
| V-2     | 2044                        |
| V-3     | 3551                        |
| V-4     | 3739                        |
| V-5     | 5165                        |

#### 2.1.15 Zonal Varietal Trial-II

### Objective: Testing of promising strains.

Five promising strains were evaluated at CCRI, Multan. Data presented in **Table 2.27** revealed that V-5 produced the maximum seed cotton yield of 5138 kg ha<sup>-1</sup>, followed by V-2 with 4708 kg ha<sup>-1</sup> while V-4 produced lowest seed cotton yield of 2798 kg ha<sup>-1</sup>.

Table 2.27 Performance of new strains in Zonal Varietal Trial-II at CCRI, Multan

| Strains | Seed cotton yield (kg ha-1) |
|---------|-----------------------------|
| V-1     | 3228                        |
| V-2     | 4708                        |
| V-3     | 3201                        |
| V-4     | 2798                        |
| V-5     | 5138                        |

#### 2.1.16 Zonal Varietal Trial-III

## Objective: Testing of promising strains.

Four promising strains were evaluated at CCRI, Multan. Data presented in **Table 2.28** revealed that V-4 produced the maximum seed cotton yield of 5676 kg ha<sup>-1</sup>, followed by V-3 with 3739 kg ha<sup>-1</sup> while V-1 produced lowest seed cotton yield of 2744 kg ha<sup>-1</sup>.

Table 2.28 Performance of new strains in Zonal Varietal Trial-III at CCRI, Multan

| Strains | Seed cotton yield (kg ha <sup>-1</sup> ) |
|---------|------------------------------------------|
| V-1     | 2744                                     |
| V-2     | 3174                                     |
| V-3     | 3739                                     |
| V-4     | 5676                                     |

### 2.1.17 Zonal Varietal Trial-IV

### Objective: Testing of promising strains.

Five promising strains were evaluated at CCRI, Multan. Data presented in **Table 2.29** revealed that V-2 produced the maximum seed cotton yield of 4143 kg ha<sup>-1</sup>, followed by V-5 with 3820 kg ha<sup>-1</sup> while V-1 produced lowest seed cotton yield of 2018 kg ha<sup>-1</sup>.

Table 2.29 Performance of new strains in Zonal Varietal Trial-IV at CCRI, Multan

| Strains | Seed cotton yield (kg ha <sup>-1</sup> ) |
|---------|------------------------------------------|
| V-1     | 2018                                     |
| V-2     | 4143                                     |
| V-3     | 2287                                     |
| V-4     | 2260                                     |
| V-5     | 3820                                     |

### 2.2 Coordinated Variety Testing Programme

#### 2.2.1 National Coordinated Varietal Trial (Set-A)

### Objective: - Testing of promising non Bt. Strains of different cotton breeders of Pakistan

The cotton seed of thirteen strains under coded numbers were received from Director Research (PCCC) for evaluation against a commercial variety. Data on seed cotton production and other parameters are presented in **Table 2.30**.

The results indicated that the strain Tipu-2 produced maximum yield 2654 kg ha<sup>-1</sup> followed by CIM-717 and CIM-610 with 2427 kg ha<sup>-1</sup> of seed cotton yield respectively while TH-17 produced lowest yield that is 529 kg ha<sup>-1</sup> against the standard CIM-620 (1870 kg ha<sup>-1</sup>)

The strain CIM-717 produced the highest lint percentage of 41.3%, followed by NIAB-444 with 39.9%. The strain Cyto-225 produced the highest value of staple length 31.2 mm, followed by CIM-610 which has staple length of 29.5 mm. All the strains were having the desirable micronaire value except GS-Ali-7, Thakkar-214, CIM-620, NIAB-444, MPS-61 and PB-896. All values of fibre strength were above the required standard except PB-896.

### 2.2.2 National Coordinated Varietal Trials (Set-B)

### Objective: Testing of promising Bt. strains of different cotton breeders of Pakistan

Twenty two strains from different cotton breeders of the country were evaluated against two commercial varieties FH-142 and *Bt.*CIM-602 at CCRI Multan.

The data presented in **Table 2.31** showed that the D-19 produced the highest seed cotton yield of 3100 kg ha<sup>-1</sup>, followed by *Bt*.CIM-632 having 3089 kg ha<sup>-1</sup> seed cotton yield while NS-181 produced lowest yield 1789 kg ha<sup>-1</sup>. The standards i.e. FH-142 and CIM-602 produced 2567 and 2460 kg ha<sup>-1</sup> seed cotton yield respectively.

Data also revealed that the strain GH-Mubarak produced the highest lint percentage of 39.9, followed by CEMB-88 with 39.5%. The strain *Bt*.CIM-632 produced the longest staple with 29.5 mm length and, followed by *Bt*.CIM-625 with 29.4 mm.

The ranging of micronaire value is from 4.4 to 5.7  $\mu$ g inch<sup>-1</sup>. Maximum fibre strength was maintained by FH-152 having 30.3 g/tex, followed by Sitara-15 with 30.1 g/tex fibre strength.

Table 2.30 Performance of Cotton Strains in National Coordinated Varietal Trial at CCRI Multan (Set-A)

| Strains       | Seed<br>cotton<br>yield<br>(kg ha <sup>-1</sup> ) | Lint<br>Yield<br>(kg ha <sup>-1</sup> ) | Lint<br>(% age) | Staple<br>length<br>(mm) | Micro<br>-naire<br>value<br>(μg inch <sup>-1</sup> ) | Fibre<br>Strength<br>(g/tex) | Plant<br>Pop.<br>(ha <sup>-1</sup> ) |
|---------------|---------------------------------------------------|-----------------------------------------|-----------------|--------------------------|------------------------------------------------------|------------------------------|--------------------------------------|
| Th-17         | 529                                               | 188                                     | 35.5            | 26.0                     | 4.3                                                  | 26.0                         | 39924                                |
| GS-Ali-7      | 2033                                              | 710                                     | 34.9            | 27.4                     | 5.1                                                  | 26.1                         | 39685                                |
| NIA-887       | 1085                                              | 347                                     | 32.0            | 25.9                     | 4.7                                                  | 24.6                         | 13746                                |
| CRIS-613      | 1188                                              | 435                                     | 36.6            | 27.2                     | 4.7                                                  | 26.6                         | 38012                                |
| Cyto-225      | 2169                                              | 811                                     | 37.6            | 31.2                     | 4.9                                                  | 29.8                         | 41598                                |
| CIM-717       | 2427                                              | 1002                                    | 41.3            | 28.3                     | 4.6                                                  | 26.1                         | 39685                                |
| TH-88/11      | 1248                                              | 446                                     | 35.7            | 25.4                     | 4.8                                                  | 24.3                         | 41000                                |
| Tipu-2        | 2654                                              | 841                                     | 31.7            | 26.5                     | 4.8                                                  | 25.6                         | 40522                                |
| Thakkar-214   | 1628                                              | 606                                     | 37.2            | 23.9                     | 6.5                                                  | 21.9                         | 38968                                |
| CIM-620 (Std) | 1870                                              | 720                                     | 38.5            | 28.2                     | 4.8                                                  | 28.0                         | 28808                                |
| NIAB-444      | 2191                                              | 874                                     | 39.9            | 26.4                     | 5.1                                                  | 25.3                         | 35023                                |
| MPS-61        | 1987                                              | 686                                     | 34.5            | 25.3                     | 5.0                                                  | 23.7                         | 39087                                |
| CIM-610       | 2427                                              | 964                                     | 39.7            | 29.5                     | 4.7                                                  | 26.9                         | 39326                                |
| PB-896        | 1838                                              | 658                                     | 35.8            | 25.4                     | 5.4                                                  | 24.9                         | 39087                                |

Sowing date = 16.05.2017

Table 2.31 Performance of different Bt. Strains of public Sector in National Coordinated Varietal Trial (Set-B) at CCRI, Multan

| Strains       | Seed-                                     |                                         | `              | ,                        | İ                                               |                              |                                      |
|---------------|-------------------------------------------|-----------------------------------------|----------------|--------------------------|-------------------------------------------------|------------------------------|--------------------------------------|
| Oliumo        | cotton<br>Yield<br>(kg ha <sup>-1</sup> ) | Lint<br>Yield<br>(kg ha <sup>-1</sup> ) | Lint<br>(%age) | Staple<br>length<br>(mm) | Micronaire<br>value<br>(μg inch <sup>-1</sup> ) | Fibre<br>strength<br>(g/tex) | Plant<br>Pop.<br>(ha <sup>-1</sup> ) |
| CEMB-3        | 2158                                      | 829                                     | 38.4           | 25.9                     | 5.7                                             | 26.4                         | 38131                                |
| B-2           | 2627                                      | 977                                     | 37.2           | 28.1                     | 4.7                                             | 28.5                         | 38490                                |
| GH-Deebal     | 2586                                      | 1001                                    | 38.7           | 28.4                     | 4.7                                             | 28.4                         | 39446                                |
| FH-152        | 2425                                      | 875                                     | 36.1           | 29.1                     | 4.7                                             | 30.3                         | 35023                                |
| Eagle-2       | 2795                                      | 1059                                    | 37.9           | 26.9                     | 5.2                                             | 27.7                         | 39566                                |
| Cyto-313      | 3078                                      | 1167                                    | 37.9           | 27.8                     | 4.7                                             | 29.1                         | 38490                                |
| Crystal-12    | 2742                                      | 1031                                    | 37.6           | 28.7                     | 4.7                                             | 28.3                         | 38251                                |
| CRIS-600      | 1968                                      | 707                                     | 35.9           | 26.4                     | 4.7                                             | 26.5                         | 37294                                |
| FH-142 (Std)  | 2567                                      | 1014                                    | 39.5           | 27.2                     | 5.4                                             | 27.3                         | 33708                                |
| CIM-632       | 3089                                      | 1205                                    | 39.0           | 29.5                     | 4.7                                             | 29.3                         | 35262                                |
| CEMB-55 (DG)  | 2232                                      | 882                                     | 39.5           | 26.0                     | 5.4                                             | 26.2                         | 33111                                |
| BH-201        | 2331                                      | 886                                     | 38.0           | 27.3                     | 5.3                                             | 26.8                         | 39326                                |
| Bakhtawar-1   | 2330                                      | 836                                     | 35.9           | 27.1                     | 5.2                                             | 26.7                         | 31676                                |
| Bahar-07      | 2185                                      | 850                                     | 38.9           | 25.4                     | 5.5                                             | 24.5                         | 36219                                |
| Sitara-15     | 2766                                      | 1048                                    | 37.9           | 28.9                     | 4.8                                             | 30.1                         | 33350                                |
| SAU-1         | 1853                                      | 680                                     | 36.7           | 27.3                     | 5.3                                             | 23.7                         | 41239                                |
| CIM-602 (Std) | 2460                                      | 918                                     | 37.3           | 28.3                     | 4.4                                             | 28.7                         | 35262                                |
| NS-181        | 1789                                      | 660                                     | 36.9           | 27.4                     | 4.9                                             | 28.3                         | 26178                                |
| D-19          | 3100                                      | 1147                                    | 37.0           | 27.8                     | 4.8                                             | 28.6                         | 36338                                |
| IUB-65        | 2881                                      | 1121                                    | 38.9           | 27.9                     | 4.9                                             | 28.9                         | 37653                                |
| GH-Mubarak    | 2909                                      | 1161                                    | 39.9           | 26.9                     | 5.4                                             | 26.8                         | 38968                                |
| CIM-625       | 2734                                      | 1055                                    | 38.6           | 29.4                     | 4.7                                             | 28.7                         | 40761                                |
| CEMB-88 (DG)  | 2622                                      | 1036                                    | 39.5           | 26.7                     | 5.3                                             | 27.5                         | 37414                                |
| AGC-Nazeer-1  | 2884                                      | 1038                                    | 36.0           | 27.0                     | 5.5                                             | 27.2                         | 40402                                |

Sowing date = 28.04.2017

### 2.2.3 National Coordinated Varietal Trials (Set-C)

# Objective: Testing of promising *Bt.* strains of different cotton breeders (private seed sector) of Pakistan

The cotton seed of twenty two candidate varieties was provided by the Director Research PCCC for evaluation against two commercial varieties *Bt.*CIM-602 and FH-142 at CCRI Multan. The data presented in **Table 2.32** showed that the strain BS-18 produced the highest seed cotton yield of 3581 kg ha<sup>-1</sup>, followed by RH-662 with 3478 kg ha<sup>-1</sup> seed cotton yield while AA-933 was at bottom position in respect of seed cotton yield (1821 kg ha<sup>-1</sup>).

Data presented in **Table 2.32** revealed that VH-Gulzar produced the highest lint percentage 40.7 followed by BS-18 with 40.5%.

The staple length of all the genotypes was less than the desired standard i.e. 28.0 mm. The range of Micronaire value was 4.5 to 5.7 µg inch<sup>-1</sup>. All the strains were except Ghauri-1, Cotton-2, BS-18, Bahar-2017, Wealage-1606 and VH-Gulzar having the desirable fibre strength.

Table 2.32 Performance of different *Bt.* Strains of private sector in National coordinated Varietal Trial (Set-C) at CCRI Multan

| Strains             | Seed<br>Cotton<br>Yield<br>(kg ha <sup>-1</sup> ) | Lint<br>Yield<br>(kg ha <sup>-1</sup> ) | Lint<br>(%age) | Staple<br>length<br>(mm) | Micro-<br>naire<br>value<br>(g/tex) | Fibre<br>strength<br>(g/tex) | Plant<br>Pop.<br>(ha <sup>-1</sup> )/ |
|---------------------|---------------------------------------------------|-----------------------------------------|----------------|--------------------------|-------------------------------------|------------------------------|---------------------------------------|
| Ghauri-1            | 2549                                              | 948                                     | 37.2           | 24.6                     | 5.4                                 | 24.0                         | 33148                                 |
| CEMB Klean Cotton-2 | 2264                                              | 874                                     | 38.6           | 24.8                     | 5.3                                 | 24.7                         | 37336                                 |
| CEMB-100            | 2746                                              | 1046                                    | 38.1           | 26.4                     | 5.5                                 | 25.2                         | 36977                                 |
| BS-80               | 2286                                              | 821                                     | 36.9           | 25.5                     | 5.0                                 | 25.0                         | 36139                                 |
| BS-18               | 3581                                              | 1450                                    | 40.5           | 24.7                     | 5.7                                 | 23.5                         | 37695                                 |
| BH-221              | 2826                                              | 1099                                    | 38.9           | 25.4                     | 5.1                                 | 25.2                         | 36857                                 |
| Bahar-2017          | 2604                                              | 977                                     | 37.5           | 25.0                     | 5.3                                 | 24.2                         | 35182                                 |
| Badar-1             | 3116                                              | 1200                                    | 38.5           | 25.6                     | 5.1                                 | 25.2                         | 40806                                 |
| FH-142 (Std-2)      | 3103                                              | 1207                                    | 38.9           | 25.4                     | 5.1                                 | 24.8                         | 38533                                 |
| Auriga -216         | 2769                                              | 1022                                    | 36.9           | 25.6                     | 5.4                                 | 25.3                         | 39490                                 |
| AA-933              | 1821                                              | 690                                     | 37.9           | 25.6                     | 5.2                                 | 25.8                         | 39610                                 |
| Weal ag-1606        | 2661                                              | 1043                                    | 39.2           | 25.5                     | 5.1                                 | 24.3                         | 39011                                 |
| VH-gulzar           | 2485                                              | 1011                                    | 40.7           | 24.4                     | 5.4                                 | 23.8                         | 35900                                 |
| Tipu-1              | 2636                                              | 1023                                    | 38.8           | 25.5                     | 5.4                                 | 25.3                         | 39131                                 |
| Thakkar-808         | 2759                                              | 1068                                    | 38.7           | 24.6                     | 5.2                                 | 24.2                         | 38293                                 |
| Tarzan-5            | 3077                                              | 1074                                    | 36.9           | 26.6                     | 5.5                                 | 26.8                         | 40447                                 |
| CIM-602 (Std-1)     | 2197                                              | 793                                     | 36.1           | 27.0                     | 4.5                                 | 26.0                         | 35661                                 |
| Shaheen-1           | 3077                                              | 1080                                    | 35.1           | 25.7                     | 4.9                                 | 25.2                         | 40567                                 |
| RH-662              | 3478                                              | 1308                                    | 37.6           | 27.6                     | 4.8                                 | 27.5                         | 38174                                 |
| RH-668              | 2277                                              | 758                                     | 35.3           | 26.7                     | 5.1                                 | 27.2                         | 40926                                 |
| N-BT-2              | 2661                                              | 899                                     | 35.8           | 25.5                     | 5.2                                 | 26.7                         | 31831                                 |
| N-1048              | 2899                                              | 1142                                    | 39.4           | 26.2                     | 4.8                                 | 25.3                         | 36738                                 |
| N-545               | 3171                                              | 1221                                    | 38.5           | 25.2                     | 5.1                                 | 25.1                         | 35062                                 |
| MNH-1016            | 2976                                              | 1155                                    | 38.8           | 25.6                     | 5.2                                 | 26.2                         | 35062                                 |

Sowing date = 28.04.2017

#### 2.2.4 Klean Cotton Trial

### Objective: Testing of promising GMOs strains of CEMB

Nine cotton genotypes from CEMB-1 to CEMB-9 were tested at CCRI, Multan. Sowing was done on 24<sup>th</sup> May, 2017 in a randomized complete block design (RCB) with three replications. Data were recorded on the agronomic, yield and fiber traits and all the agronomic and plant protection measurements were applied. Basically the trial was Glyphosate resistant and was conducted to observe the effects of Weedicides on crop plant as well as on weeds. First dose of Weedicide was applied thirty days after sowing on 24<sup>th</sup> June, 2017. For this purpose, a weedicide i.e. CLEAN UP (Tarzan) was applied

@ 1000 ml per acre to all the replications equally. Mortality data was recorded seven days and twelve days after spraying. The data showed that no effect of the spray was observed on the genotypes and all the genotypes were found highly tolerant against Glyphosate. The second dose of Weedicide was applied on 27 of July, 2017 at same rate. The results show that all of the nine genotypes were GMOs having complete resistance/tolerance to Glyphosate. Yield and fiber data of these strains are given in **Table 2.33**.

The data showed that CEMB-3 produced the highest seed cotton yield of 1856 kg ha<sup>-1</sup>, followed by CEMB-5 with 1799 and CEMB-2 with 1705 kg ha<sup>-1</sup> while CEMB-7 produced lowest yield of 1471 kg ha<sup>-1</sup> among these strains.

The strain CEMB-1 produced the highest lint percentage of 38.8 followed by CEMB-4 with 37.8% and CEMB-5 with 37.5%.

The staple length of all strains were below the standard raging from 24.4 to 25.5 mm. Micronaire values of all the strains were undesirable and were ranged from 5.0 to  $5.3~\mu g$  inch<sup>-1</sup>. Maximum fibre strength of 26.3 was revealed by the strains CEMB-3 and CEMB-4.

Table 2.33 Performance of different strains in Klean Cotton at CCRI Multan

| Strains | Seed<br>Cotton<br>Yield<br>(kg ha <sup>-1</sup> ) | Lint<br>Yield<br>(kg ha <sup>-1</sup> ) | Lint<br>(%age) | Staple<br>length<br>(mm) | Micro-<br>naire<br>value<br>(μg inch <sup>-1</sup> ) | Fibre<br>strength<br>(g/tex) | Av.<br>boll<br>weight<br>(g) | Plant<br>Pop.<br>(ha <sup>-1</sup> ) |
|---------|---------------------------------------------------|-----------------------------------------|----------------|--------------------------|------------------------------------------------------|------------------------------|------------------------------|--------------------------------------|
| CEMB-1  | 1621                                              | 629                                     | 38.8           | 24.4                     | 5.3                                                  | 25.3                         | 2.9                          | 38452                                |
| CEMB-2  | 1705                                              | 612                                     | 35.9           | 25.3                     | 5.1                                                  | 25.6                         | 3.4                          | 37122                                |
| CEMB-3  | 1856                                              | 677                                     | 36.5           | 25.1                     | 5.0                                                  | 26.3                         | 3.3                          | 41247                                |
| CEMB-4  | 1483                                              | 561                                     | 37.8           | 25.3                     | 5.2                                                  | 26.3                         | 3.1                          | 39274                                |
| CEMB-5  | 1799                                              | 675                                     | 37.5           | 24.9                     | 5.0                                                  | 25.7                         | 2.9                          | 36046                                |
| CEMB-6  | 1661                                              | 608                                     | 36.6           | 24.8                     | 5.1                                                  | 25.5                         | 2.5                          | 37739                                |
| CEMB-7  | 1471                                              | 549                                     | 37.3           | 24.5                     | 5.1                                                  | 25.6                         | 3.2                          | 40350                                |
| CEMB-8  | 1713                                              | 634                                     | 37.0           | 25.5                     | 5.2                                                  | 25.6                         | 2.7                          | 37839                                |
| CEMB-9  | 1705                                              | 631                                     | 37.0           | 24.7                     | 5.3                                                  | 25.6                         | 3.3                          | 37481                                |

Sowing dated = 24.05.2017, C.V= 6.30% C.D= 250.66 and 181.93

# 2.2.5 Provincial Coordinated Cotton Trials Provincial Coordinated Cotton Trial-I (*Bt.*)

### Objective: Testing of promising strains of different cotton breeders of the Punjab.

Thirty eight promising strains of different cotton breeders from the Punjab were evaluated along with standards at CCRI, Multan. Data presented in **Table 2.34** revealed that PC-7 produced the maximum seed cotton yield of 2630 kg ha<sup>-1</sup>, followed by PC-17 with 2526 kg ha<sup>-1</sup> while PC-36 (1602 kg ha<sup>-1</sup>) was at the bottom of the conducted trial.

The Strain PC-8 produced the highest lint percentage of 40.3 followed by PC-23 having 40.1 lint percentages. The strain PC-12 produced the longest staple having 27.5 mm length, followed by the variety PC-3 with 27.2 mm and while the lowest value was recorded for PC-38 (22.9 mm) staple length. Micronaire value of strains PC-1, PC-4, PC-5, PC-6, PC-14, PC-16, PC-17, PC-18, PC-19, PC-20, PC-21, PC-22, PC-24, PC-25, PC-26, PC-27, PC-28, PC-29, PC-30, PC-31, PC-37, PC-39 and PC-40 were above the standard values. The fibre strength of PC-23, PC- 25, PC- 26, PC-29, PC-30, PC-31, PC-32, PC-37 and PC-39 were below standard.

Table 2.34 Performance of new *Bt.* strains in Provincial Coordinated Cotton Trial-I at CCRI, Multan

|         |                                                   | CCRI, Mu                                 | ituii           | I                        |                                                 |                              |                                      |
|---------|---------------------------------------------------|------------------------------------------|-----------------|--------------------------|-------------------------------------------------|------------------------------|--------------------------------------|
| Strains | Seed<br>cotton<br>Yield<br>(kg ha <sup>-1</sup> ) | Lint<br>Yield<br>(kg. ha <sup>-1</sup> ) | Lint<br>(% age) | Staple<br>length<br>(mm) | Micronaire<br>value<br>(μg inch <sup>-1</sup> ) | Fibre<br>Strength<br>(g/tex) | Plant<br>Pop.<br>(ha <sup>-1</sup> ) |
| PC-1    | 2128                                              | 815                                      | 38.3            | 25.8                     | 5.0                                             | 25.3                         | 30128                                |
| PC-2    | 2143                                              | 778                                      | 36.3            | 25.4                     | 4.8                                             | 25.9                         | 36405                                |
| PC-3    | 2467                                              | 915                                      | 37.1            | 27.2                     | 4.4                                             | 28.3                         | 32280                                |
| PC-4    | 2143                                              | 799                                      | 37.3            | 24.7                     | 5.2                                             | 25.1                         | 35149                                |
| PC-5    | 2042                                              | 751                                      | 36.8            | 25.0                     | 5.1                                             | 25.0                         | 38557                                |
| PC-6    | 2228                                              | 813                                      | 36.5            | 25.8                     | 5.2                                             | 26.1                         | 35329                                |
| PC-7    | 2630                                              | 994                                      | 37.8            | 26.8                     | 4.5                                             | 26.8                         | 35149                                |
| PC-8    | 2214                                              | 892                                      | 40.3            | 26.1                     | 4.9                                             | 26.3                         | 34270                                |
| PC-9    | 2292                                              | 912                                      | 39.8            | 25.1                     | 4.9                                             | 25.6                         | 35508                                |
| PC-10   | 2335                                              | 873                                      | 37.4            | 26.7                     | 4.6                                             | 27.7                         | 36046                                |
| PC-11   | 1744                                              | 628                                      | 36.0            | 25.2                     | 4.9                                             | 25.6                         | 38198                                |
| PC-12   | 2088                                              | 712                                      | 34.1            | 27.5                     | 4.4                                             | 28.9                         | 34532                                |
| PC-13   | 2279                                              | 761                                      | 33.4            | 25.7                     | 4.6                                             | 26.1                         | 36046                                |
| PC-14   | 2522                                              | 968                                      | 38.4            | 25.2                     | 5.0                                             | 25.2                         | 36584                                |
| PC-15   | 2522                                              | 921                                      | 36.5            | 26.9                     | 4.7                                             | 27.0                         | 34432                                |
| PC-16   | 2032                                              | 638                                      | 31.4            | 26.2                     | 5.0                                             | 26.5                         | 38198                                |
| PC-17   | 2526                                              | 912                                      | 36.1            | 25.7                     | 5.3                                             | 25.8                         | 32639                                |
| PC-18   | 2279                                              | 777                                      | 34.1            | 26.4                     | 5.1                                             | 26.9                         | 36405                                |
| PC-19   | 2097                                              | 774                                      | 36.9            | 25.3                     | 5.0                                             | 25.3                         | 37301                                |
| PC-20   | 2219                                              | 861                                      | 38.8            | 24.5                     | 5.0                                             | 23.6                         | 37839                                |
| PC-21   | 2100                                              | 750                                      | 35.7            | 25.6                     | 5.2                                             | 25.1                         | 36945                                |
| PC-22   | 2175                                              | 779                                      | 35.8            | 25.1                     | 5.2                                             | 25.1                         | 38198                                |
| PC-23   | 2347                                              | 941                                      | 40.1            | 24.3                     | 4.9                                             | 24.1                         | 37301                                |
| PC-24   | 2392                                              | 880                                      | 36.8            | 24.4                     | 5.0                                             | 25.0                         | 34611                                |
| PC-25   | 2382                                              | 858                                      | 36.0            | 24.7                     | 5.0                                             | 24.8                         | 37301                                |
| PC-26   | 2030                                              | 725                                      | 35.7            | 24.8                     | 5.1                                             | 24.7                         | 36943                                |
| PC-27   | 2454                                              | 876                                      | 35.7            | 25.9                     | 5.1                                             | 25.3                         | 37839                                |
| PC-28   | 2153                                              | 846                                      | 39.3            | 25.3                     | 5.0                                             | 25.3                         | 36943                                |
| PC-29   | 2283                                              | 886                                      | 38.8            | 24.5                     | 5.3                                             | 24.0                         | 33894                                |
| PC-30   | 1926                                              | 703                                      | 36.5            | 23.4                     | 5.0                                             | 22.2                         | 34970                                |
| PC-31   | 2452                                              | 902                                      | 36.8            | 24.5                     | 5.2                                             | 23.8                         | 33894                                |
| PC-32   | 2460                                              | 891                                      | 36.2            | 25.1                     | 4.8                                             | 24.8                         | 36943                                |
| PC-33   | 2053                                              | 719                                      | 35.0            | 25.4                     | 4.5                                             | 25.7                         | 34791                                |
| PC-34   | 2183                                              | 795                                      | 36.4            | 24.8                     | 4.3                                             | 25.7                         | 34432                                |
| PC-35   | 2191                                              | 819                                      | 37.4            | 25.8                     | 4.6                                             | 26.1                         | 36763                                |
| PC-36   | 1602                                              | 636                                      | 39.7            | 26.3                     | 4.6                                             | 26.5                         | 36225                                |
| PC-37   | 2250                                              | 839                                      | 37.3            | 24.6                     | 5.0                                             | 23.3                         | 34970                                |
| PC-38   | 1668                                              | 622                                      | 37.3            | 22.9                     | 4.8                                             | 22.2                         | 36225                                |
| PC-39   | 2304                                              | 834                                      | 36.2            | 24.9                     | 5.0                                             | 24.9                         | 34253                                |
| PC-40   | 2272                                              | 866                                      | 38.1            | 24.8                     | 5.3                                             | 25.5                         | 34791                                |

Sowing date = 20.05.2017

### 2.2.6 Provincial Coordinated Cotton Trial-II

## Objective: Testing of promising strains of different cotton breeders of the Punjab.

Three promising strains of different cotton breeders included from the Punjab along with a standard were evaluated at CCRI, Multan. Data presented in **Table 2.35** revealed that PC-4 produced the maximum seed cotton yield of 3167 kg ha<sup>-1</sup>, followed by PC-3 with 3090 kg ha<sup>-1</sup> while PC-1 produced lowest yield of 1990 kg ha<sup>-1</sup>.

The strain PC-2 produced the highest lint percentage of 38.9%, followed by the PC-1 with 37.2 lint percentage. All the strains have staple length below the required standard. Micronaire values of all the strains were above the required limit except PC-1. Fibre strength of the PC-3 was above the standard.

Table 2.35 Performance of new *Bt.* strains in Provincial Coordinated Cotton Trial-II at CCRI, Multan

| Strains | Seed<br>cotton<br>yield<br>(kg ha <sup>-1</sup> ) | Lint<br>yield<br>(kg ha <sup>-1</sup> ) | Lint<br>(%age) | Staple<br>Length<br>(mm) | Micronaire<br>Value<br>(μg inch <sup>-1</sup> ) | Fibre<br>Strength<br>(g/tex) | Plant<br>Pop.<br>(ha <sup>-1</sup> ) |
|---------|---------------------------------------------------|-----------------------------------------|----------------|--------------------------|-------------------------------------------------|------------------------------|--------------------------------------|
| PC-1    | 1990                                              | 740                                     | 37.2           | 23.2                     | 4.9                                             | 21.6                         | 41247                                |
| PC-2    | 2324                                              | 904                                     | 38.9           | 25.8                     | 5.2                                             | 25.1                         | 35149                                |
| PC-3    | 3090                                              | 958                                     | 31.0           | 26.8                     | 5.0                                             | 27.0                         | 42143                                |
| PC-4    | 3167                                              | 982                                     | 31.0           | 26.0                     | 5.3                                             | 25.2                         | 43219                                |

Sowing date = 16.05.2017

### 2.3 Testing of Commercial Varieties

### 2.3.1 Standard Varietal Trial-1

Objective: To test the performance of commercial varieties of Pakistan under the agro-climatic conditions of Multan

Twenty six commercial varieties of the country were tested at CCRI, Multan. Data recorded on seed cotton yield and other parameters are presented in **Table 2.36**. The results indicated that variety CIM-446 excelled among all varieties by producing seed cotton yield 3174 kg ha<sup>-1</sup> followed by the variety CIM-608 with 3120 kg ha<sup>-1</sup> and NIAB-111 with 2905 kg ha<sup>-1</sup> seed cotton production. Variety CIM-496 had the highest lint percentage of 38.5, followed by varieties CIM-534 having lint percentage of 38.1. The variety CIM-608 maintained the longest staple of 31.5 mm, followed by the variety the Cyto-124 with 29.5 mm staple length.

Table 2.36 Performance of commercial varieties in Standard Varietal Trial-l at CCRI, Multan

|          | <i>.</i>                                                            |                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|----------|---------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          |                                                                     |                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Plant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| released |                                                                     |                                                                                                                                                                                                                                                                                              | (% age)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Pop.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|          |                                                                     | (kg ha ')                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (g/tex)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (ha <sup>-1</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          |                                                                     |                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|          | 2529                                                                | 885                                                                                                                                                                                                                                                                                          | 35.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 25.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 26.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 31592                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|          | 3174                                                                | 1184                                                                                                                                                                                                                                                                                         | 37.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 27.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 29.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 32310                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|          | 1775                                                                | 607                                                                                                                                                                                                                                                                                          | 34.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 27.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 28.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 33028                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|          | 2206                                                                | 790                                                                                                                                                                                                                                                                                          | 35.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 27.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 30.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 35182                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|          | 1883                                                                | 670                                                                                                                                                                                                                                                                                          | 35.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 25.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 26.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 36259                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2001     | 2636                                                                | 883                                                                                                                                                                                                                                                                                          | 33.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 26.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 28.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 35541                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2002     | 2475                                                                | 893                                                                                                                                                                                                                                                                                          | 36.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 26.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 27.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 38054                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2004     | 1883                                                                | 712                                                                                                                                                                                                                                                                                          | 37.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 26.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 28.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 35541                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2004     | 1560                                                                | 590                                                                                                                                                                                                                                                                                          | 37.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 26.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 27.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 31592                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2004     | 1937                                                                | 713                                                                                                                                                                                                                                                                                          | 36.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 27.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 28.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 38413                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2004     | 2905                                                                | 1057                                                                                                                                                                                                                                                                                         | 36.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 26.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 28.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 40208                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2004     | 2260                                                                | 805                                                                                                                                                                                                                                                                                          | 35.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 28.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 30.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 39849                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2005     | 2636                                                                | 1015                                                                                                                                                                                                                                                                                         | 38.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 26.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 27.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 38772                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2006     | 1937                                                                | 723                                                                                                                                                                                                                                                                                          | 37.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 27.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 26.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 35900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2006     | 2744                                                                | 971                                                                                                                                                                                                                                                                                          | 35.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 27.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 28.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 29079                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2006     | 2044                                                                | 779                                                                                                                                                                                                                                                                                          | 38.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 26.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 28.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 30515                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2009     | 1722                                                                | 585                                                                                                                                                                                                                                                                                          | 34.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 26.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 28.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 36259                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2009     | 2152                                                                | 760                                                                                                                                                                                                                                                                                          | 35.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 27.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 28.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 34105                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2010     | 1829                                                                | 662                                                                                                                                                                                                                                                                                          | 36.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 25.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 27.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 32669                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2010     | 2582                                                                | 891                                                                                                                                                                                                                                                                                          | 34.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 23.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 26.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 36259                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2012     | 1937                                                                | 680                                                                                                                                                                                                                                                                                          | 35.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 27.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 30.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 32310                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2013     | 3120                                                                | 1161                                                                                                                                                                                                                                                                                         | 37.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 31.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 31.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 36977                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2015     | 1775                                                                | 659                                                                                                                                                                                                                                                                                          | 37.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 29.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 30.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 33028                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2015     | 1883                                                                | 674                                                                                                                                                                                                                                                                                          | 35.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 26.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 28.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 25848                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2016     | 2529                                                                | 893                                                                                                                                                                                                                                                                                          | 35.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 24.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 26.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 31592                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2016     | 1668                                                                | 624                                                                                                                                                                                                                                                                                          | 37.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 26.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 28.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 36259                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|          | Year of released  1993 1998 2000 2000 2001 2002 2004 2004 2004 2004 | released (kg ha <sup>-1</sup> )  1993 2529  1998 3174  2000 1775  2000 2206  2000 1883  2001 2636  2002 2475  2004 1883  2004 1560  2004 1937  2004 2260  2005 2636  2006 1937  2006 2744  2006 2044  2009 1722  2009 2152  2010 1829  2010 2582  2012 1937  2013 3120  2015 1883  2016 2529 | Year of released         Seed Cotton Yield (kg ha¹)         Lint Yield (kg ha¹)           1993         2529         885           1998         3174         1184           2000         1775         607           2000         2206         790           2001         2636         883           2002         2475         893           2004         1883         712           2004         1560         590           2004         1937         713           2004         2905         1057           2004         2905         1057           2004         2636         1015           2005         2636         1015           2006         1937         723           2006         2744         971           2006         2744         971           2009         2152         760           2010         1829         662           2010         2582         891           2012         1937         680           2013         3120         1161           2015         1883         674           2016         2529 | Year of released         Seed Cotton Yield (kg ha¹¹)         Lint Yield (kg ha¹¹)         Lint (% age)           1993         2529         885         35.0           1998         3174         1184         37.3           2000         1775         607         34.2           2000         2206         790         35.8           2001         2636         883         33.5           2002         2475         893         36.1           2004         1883         712         37.8           2004         1560         590         37.8           2004         1937         713         36.8           2004         2905         1057         36.4           2004         2260         805         35.6           2005         2636         1015         38.5           2006         1937         723         37.3           2006         2744         971         35.4           2009         2152         760         35.3           2010         1829         662         36.2           2010         2582         891         34.5           2012         1937         680 | Year of released         Seed Cotton Yield (kg ha¹¹)         Lint Yield (kg ha¹¹)         Lint (% age) (mm)         Staple length (mm)           1993         2529         885         35.0         25.6           1998         3174         1184         37.3         27.4           2000         1775         607         34.2         27.2           2000         2206         790         35.8         27.6           2001         2636         883         33.5         26.6           2002         2475         893         36.1         26.2           2004         1883         712         37.8         26.5           2004         1560         590         37.8         26.4           2004         1937         713         36.8         27.9           2004         2905         1057         36.4         26.2           2004         2260         805         35.6         28.4           2005         2636         1015         38.5         26.1           2006         1937         723         37.3         27.2           2006         2744         971         35.4         27.3           2009 <td< td=""><td>Year of released         Seed Cotton Yield (kg ha¹)         Lint Yield (kg ha¹)         Lint (% age) (mm)         Staple length (mm)         Micronaire value (μg inch¹)           1993         2529         885         35.0         25.6         5.0           1998         3174         1184         37.3         27.4         4.6           2000         1775         607         34.2         27.2         4.9           2000         2206         790         35.8         27.6         4.1           2000         1883         670         35.6         25.2         3.5           2001         2636         883         33.5         26.6         4.0           2002         2475         893         36.1         26.2         4.4           2004         1883         712         37.8         26.5         4.7           2004         1937         713         36.8         27.9         4.3           2004         2905         1057         36.4         26.2         4.6           2004         2260         805         35.6         28.4         3.9           2005         2636         1015         38.5         26.1         3.9</td><td>Year of released released         Seed Cotton Yield (kg ha¹)         Lint Yield (kg ha¹)         Lint (% age) length (mm)         Micronaire value (μg inch¹)         Fibre Strength (g/tex)           1993         2529         885         35.0         25.6         5.0         26.4           1998         3174         1184         37.3         27.4         4.6         29.3           2000         1775         607         34.2         27.2         4.9         28.6           2000         2206         790         35.8         27.6         4.1         30.5           2001         2636         883         33.5         26.6         4.0         28.4           2002         2475         893         36.1         26.2         4.4         27.7           2004         1883         712         37.8         26.5         4.7         28.4           2002         2475         893         36.1         26.2         4.4         27.7           2004         1560         590         37.8         26.5         4.7         28.4           2004         2905         1057         36.4         26.2         4.6         28.0           2004         2260</td><td>Year of released         Seed Cotton Yield (kg ha<sup>-1</sup>)         Lint (% age) (kg ha<sup>-1</sup>)         Staple length (mm)         Micronaire value (μg inch<sup>-1</sup>)         Fibre Strength (g/tex)         Av. Boll wt. (g)           1993         2529         885         35.0         25.6         5.0         26.4         2.5           1998         3174         1184         37.3         27.4         4.6         29.3         2.6           2000         1775         607         34.2         27.2         4.9         28.6         3.1           2000         2206         790         35.8         27.6         4.1         30.5         3.2           2000         1883         670         35.6         25.2         3.5         26.6         2.6           2001         2636         883         33.5         26.6         4.0         28.4         2.6           2002         2475         893         36.1         26.2         4.4         27.7         2.6           2004         1883         712         37.8         26.5         4.7         28.4         2.5           2004         1937         713         36.8         27.9         4.3         28.7         2.8</td></td<> | Year of released         Seed Cotton Yield (kg ha¹)         Lint Yield (kg ha¹)         Lint (% age) (mm)         Staple length (mm)         Micronaire value (μg inch¹)           1993         2529         885         35.0         25.6         5.0           1998         3174         1184         37.3         27.4         4.6           2000         1775         607         34.2         27.2         4.9           2000         2206         790         35.8         27.6         4.1           2000         1883         670         35.6         25.2         3.5           2001         2636         883         33.5         26.6         4.0           2002         2475         893         36.1         26.2         4.4           2004         1883         712         37.8         26.5         4.7           2004         1937         713         36.8         27.9         4.3           2004         2905         1057         36.4         26.2         4.6           2004         2260         805         35.6         28.4         3.9           2005         2636         1015         38.5         26.1         3.9 | Year of released released         Seed Cotton Yield (kg ha¹)         Lint Yield (kg ha¹)         Lint (% age) length (mm)         Micronaire value (μg inch¹)         Fibre Strength (g/tex)           1993         2529         885         35.0         25.6         5.0         26.4           1998         3174         1184         37.3         27.4         4.6         29.3           2000         1775         607         34.2         27.2         4.9         28.6           2000         2206         790         35.8         27.6         4.1         30.5           2001         2636         883         33.5         26.6         4.0         28.4           2002         2475         893         36.1         26.2         4.4         27.7           2004         1883         712         37.8         26.5         4.7         28.4           2002         2475         893         36.1         26.2         4.4         27.7           2004         1560         590         37.8         26.5         4.7         28.4           2004         2905         1057         36.4         26.2         4.6         28.0           2004         2260 | Year of released         Seed Cotton Yield (kg ha <sup>-1</sup> )         Lint (% age) (kg ha <sup>-1</sup> )         Staple length (mm)         Micronaire value (μg inch <sup>-1</sup> )         Fibre Strength (g/tex)         Av. Boll wt. (g)           1993         2529         885         35.0         25.6         5.0         26.4         2.5           1998         3174         1184         37.3         27.4         4.6         29.3         2.6           2000         1775         607         34.2         27.2         4.9         28.6         3.1           2000         2206         790         35.8         27.6         4.1         30.5         3.2           2000         1883         670         35.6         25.2         3.5         26.6         2.6           2001         2636         883         33.5         26.6         4.0         28.4         2.6           2002         2475         893         36.1         26.2         4.4         27.7         2.6           2004         1883         712         37.8         26.5         4.7         28.4         2.5           2004         1937         713         36.8         27.9         4.3         28.7         2.8 |

Sowing date: 05.05.2017;

C.D. (5%) for seed cotton 150.81

CV% = 5.6

Micronaire value of all the varieties is according to the required standard except NIBGE-2, CIM-554, MNH-786, Gomal-93, Malmal and NIAB-777. Fibre strength of all the genotypes was in the desirable range.

### 2.3.2 Standard Varietal Trial-2

# Objective: To test the performance of commercial *Bt.* varieties of Pakistan under the agro-climatic conditions of Multan

Eighteen *Bt.* commercial varieties of the country were tested at CCRI, Multan. Data recorded on seed cotton yield and other parameters are presented in **Table 2.37**. The results indicated that variety AA-703 excelled among all varieties by producing seed cotton yield of 2345 kg ha<sup>-1</sup>, followed by the variety *Bt.*CIM-599 with 2323 kg ha<sup>-1</sup> while *Bt.* CIM-600 produced lowest (1349 kg ha<sup>-1</sup>) seed cotton production. Variety IR-3701 had the highest lint percentage of 44.3, followed by Bt-121 (39.5%) while MNH-886 had the lowest (32.1%) lint percentage. Staple lengths of all the varieties were below the standard. Micronaire of A-555, IR-3701, Sitara-008, FH-114, FH-142, CEMB-33 and FH-Lalazar were above the standard. Fibre strength of all the varieties except IR-3701, Sitara-008, *Bt.*121, *Bt.*CIM-600 and FH-142 were up to the standard.

Table 2.37 Performance of commercial varieties in Standard Varietal Trial-2 at CCRI, Multan

| Varieties  | Year of release | Seed<br>Cotton<br>Yield<br>(kg ha <sup>-1</sup> ) | Lint<br>Yield<br>(kg ha <sup>-1</sup> ) | Lint<br>(% age) | Staple<br>length<br>(mm) | Micro-<br>naire<br>value<br>(µg inch <sup>-1</sup> ) | Fibre<br>Strength<br>(g/tex) | Av.<br>Boll<br>wt.<br>(g) | Plant<br>Pop.<br>(ha <sup>-1</sup> ) |
|------------|-----------------|---------------------------------------------------|-----------------------------------------|-----------------|--------------------------|------------------------------------------------------|------------------------------|---------------------------|--------------------------------------|
| AA-703     | 2010            | 2345                                              | 800                                     | 34.1            | 27.5                     | 4.7                                                  | 26.2                         | 2.8                       | 41598                                |
| AA-802     | 2010            | 1773                                              | 672                                     | 37.9            | 25.1                     | 4.5                                                  | 25.5                         | 2.7                       | 38012                                |
| IR-3701    | 2010            | 2050                                              | 908                                     | 44.3            | 23.9                     | 5.9                                                  | 22.2                         | 3.0                       | 39805                                |
| Sitara-008 | 2010            | 1516                                              | 549                                     | 36.2            | 25.0                     | 5.0                                                  | 24.0                         | 3.1                       | 37294                                |
| Bt.N-121   | 2010            | 1910                                              | 754                                     | 39.5            | 24.8                     | 4.9                                                  | 22.3                         | 3.0                       | 39087                                |
| FH-113     | 2010            | 1775                                              | 611                                     | 34.4            | 26.8                     | 4.5                                                  | 26.4                         | 3.0                       | 40522                                |
| MNH-886    | 2012            | 2064                                              | 663                                     | 32.1            | 26.0                     | 4.4                                                  | 25.3                         | 3.8                       | 29405                                |
| Bt.N-141   | 2012            | 1369                                              | 497                                     | 36.3            | 27.0                     | 4.0                                                  | 28.2                         | 2.7                       | 41954                                |
| FH-114     | 2012            | 1444                                              | 487                                     | 33.7            | 25.8                     | 5.2                                                  | 25.3                         | 2.7                       | 38370                                |
| Bt.CIM-598 | 2012            | 1490                                              | 539                                     | 36.2            | 25.0                     | 4.2                                                  | 25.8                         | 2.2                       | 35501                                |
| Bt.CIM-599 | 2013            | 2323                                              | 702                                     | 37.8            | 26.2                     | 4.3                                                  | 27.0                         | 2.7                       | 40880                                |
| Bt.CIM-602 | 2013            | 1873                                              | 609                                     | 32.5            | 27.4                     | 4.0                                                  | 26.1                         | 2.9                       | 34426                                |
| A-555      | 2013            | 2219                                              | 825                                     | 37.2            | 25.3                     | 5.5                                                  | 25.7                         | 3.5                       | 39446                                |
| CEMB-33    | 2013            | 1556                                              | 878                                     | 37.8            | 26.5                     | 5.3                                                  | 26.5                         | 3.1                       | 40880                                |
| IUB-222    | 2013            | 2187                                              | 811                                     | 37.1            | 27.4                     | 4.8                                                  | 26.1                         | 3.9                       | 39446                                |
| FH-142     | 2013            | 1966                                              | 749                                     | 38.1            | 24.9                     | 5.4                                                  | 24.4                         | 3.3                       | 34067                                |
| FH-Lalazar | 2015            | 1756                                              | 636                                     | 36.2            | 26.0                     | 5.3                                                  | 25.0                         | 3.8                       | 34067                                |
| CIM-600    | 2016            | 1349                                              | 514                                     | 38.1            | 25.8                     | 4.9                                                  | 25.2                         | 2.5                       | 38729                                |

Sowing date: 16.05.2017

### 2.4 Breeding Material

### 2.4.1 Selection from Breeding Material

Single plant selections were made from the breeding material in different segregating generations for further testing and screening against biotic and a biotic stresses. The detail of breeding material planted and number of plants selected during 2017-18 is given in **Table 2.38**.

### 2.5 Maintenance of Genetic Stock of World Cotton Collection

### 2.5.1 Maintenance/Preservation of Cotton Genetic Stock at CCRI Multan

Five thousand nine hundred and twenty three genotypes arer being maintained at the Cold Room of CCRI Multan for Long (100 years), medium (50 years) and short term (25years). One third of the seed was planted in the field for production of fresh seed as well as to utilize in the hybridization programme. Detail of genetic stock is given in **Table 2.39. The** seed of genetic stock were also supplied, locally and abroad, to different

scientists, cotton growers, academia and different institutes/research stations for their research/breeding programs. The detail is given in **Table 2.40**.

Table 2.38 Detail of single plants selected from breeding material

| Generation/Trial              | No. of plants |             | Range              |
|-------------------------------|---------------|-------------|--------------------|
| Generation/Trial              | Selected      | Lint (%age) | Staple length (mm) |
| VT                            | 274           | 40.6-45.8   | 29.6 - 31.5        |
| MVT                           | 369           | 39.6-44.8   | 29.6 - 31.5        |
| PRT                           | 474           | 39.6-45.8   | 29.3 - 31.3        |
| F <sub>6-7</sub> single lines | 993           | 39.0-44.8   | 29.0 - 31.0        |
| F <sub>5</sub> single lines   | 1290          | 38.9-44.1   | 28.0 - 31.0        |
| F <sub>4</sub> generation     | 1434          | 38.4-43.3   | 28.9 - 30.7        |
| F <sub>3</sub> generation     | 1794          | 38.0-42.0   | 28.5 - 30.5        |
| F <sub>2</sub> generation     | 1991          | 37.5-42.1   | 28.2 - 30.0        |
| Others                        | 1134          | 37.3-46.5   | 28.0 - 32.1        |

Table 2.39 Detail of Genetic Stock of World Cotton Collection

| Local genotypes         |       | 1090 |
|-------------------------|-------|------|
| Exotic genotypes        |       | 4833 |
|                         | Total | 5923 |
| Species-Wise Detail     | •     |      |
| Gossypium herbaceum L.  |       | 546  |
| Gossypium arboreum L.   |       | 1025 |
| Gossypium hirsutum L.   |       | 4243 |
| Gossypium barbadence L. |       | 109  |

 Table 2.40
 List of scientists/researchers whom received the cotton germplasm 2017-18

| Sr. | Name of Institute / Research Scientists                                                                                                                          | No. of |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| #   |                                                                                                                                                                  | stock  |
| 1   | Dr. Muhammad Kamran Qureshi, Associate Professor, Department of PB&G Faculty of Agricultural Science and Technology, Bahauddin Zakariya University, Multan       | 13     |
| 2   | Dr. Ummad-ud-Din, Assistant Professor, Department of Plant Pathology, BZU, Multan                                                                                | 03     |
| 3   | Dr. Mehmoob-u-Rehman, Principal Scientist, National Institute for Biotechnology & Genetics Engineering (NIBGE), Faisalabad.                                      | 123    |
| 4   | Mr. Abdul Razaq Soomro, Manager Seed, V-Gro Seed, Sadiqabad.                                                                                                     | 24     |
| 5   | Dr. Safdar Ali, Assistant Professor, Department of Plant Pathology, University of Agriculture, Faisalabad.                                                       | 20     |
| 6   | Dr. Muhammad Tehseen Azhar, Lecturer, Department of Plant Breeding & Genetics University of Agriculture, Faisalabad.                                             | 37     |
| 7   | Dr. Wajid Nazeer, Assistant Professor, Department of Plant Breeding & Genetics, Muhammad Nawaz Shareef University of Agriculture, Multan                         | 42     |
| 8   | Dr. Saghir Ahmad, Director, Cotton Research Institute, Old Shujabad Road, Multan                                                                                 | 47     |
| 9   | Mr. Sawan Laghari, Deputy chief Scientist, Cotton Group Leader, Nuclear Institute of Agriculture, Tandojam                                                       | 07     |
| 10  | Ch. Muhammad Hanif, Deputy General Manger Seed, Four Brothers, Seed Corporation Pakistan, Al-Quresh Housing Scheme, Phase-I, Sher Shah Road, Multan              | 07     |
| 11  | Dr. Muhammad Asif Saleem, Assistant Professor/Field Incharge, Department of Plant Breeding & Genetics, Faculty of Agricultural Sciences & Technology, BZU Multan | 91     |
| 12  | Prof. Dr. Shazia Anjum, Director, Cholistan Institute of Desert Studies, The Islamia University, Bahawalpur.                                                     | 04     |
| 13  | Dr. Shehzadi Mahpara, Head, Department of Plant Breeding & Genetics Faculty of Agricultural Sciences, Ghazi University, Dera Ghazi Khan.                         | 10     |
| 14  | Dr. Niaz Ahmad, Assistant professor, Department of Soil Science, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan          | 04     |
| 15  | Dr. Amir Suakeel, Assistant Professor, Department of Plant Breeding & Genetics, University of Agriculture, Faisalabad.                                           | 50     |
| 16  | Director, Central Cotton Research Institute, The National Highway Sakrand, District Nawab Shah, Sindh                                                            | 13     |
| 17  | Mr. Asghar Ali, Bahaar Seed Corporation, Manthar Road, Sadiqabad.                                                                                                | 20     |
| 18  | Mr. Khalid Iqbal, Plant Pathologist, Onion Research Station, Husri Hyderabad.                                                                                    | 02     |
| 19  | Dr. Rana Haroon Maqsood, Assistant Prof ,Department of PB&G MNSUA Multan                                                                                         | 27     |

| Sr. | Name of Institute / Research Scientists                                                    | No. of |
|-----|--------------------------------------------------------------------------------------------|--------|
| #   |                                                                                            | stock  |
| 20  | Mr. Muhammad Salman, Assistant Professor, Department of PB&G, MNSUA Multan                 | 25     |
| 21  | Mr. Zaka Ahmad, Executive Technical Seed, R&D Kanzo Quality Seed, Multan                   | 36     |
| 22  | The Plant Pathologist, Plant Pathology Section, Plant Pathology Research Institute, Ayub   | 08     |
|     | Agri. Research Institute, Faisalabad.                                                      |        |
| 23  | Mr. Muhammad Tahir Jan, Officer Incharge, Cotton Research Station, Bahawalpur.             | 23     |
| 24  | The Chairman, Department of Plant Breeding & Genetics, BZU Multan                          | 51     |
| 25  | Dr. Muhammad Mansoor, Principal Scientific Officer, Pakistan Agricultural Research Council | 07     |
|     | (Arid Zone Research Centre), Dera Ismail Khan                                              |        |
| 26  | Dr. Zulfiqar Ali, Professor, Department of Plant Breeding & Genetics, MNSUSA Multan.       | 04     |
| 27  | Mr. Karim Bakhsh Sial,. Officer Incharge, CRS Sibi Model Farm, Johar Road, Sib Balochistan | 02     |
| 28  | Dr. Waqas Malik, Associate Professor, Department of PBG, BZU Multan                        | 10     |
| 29  | Dr. Muhammad Iqbal, Chairman, Department of Plant Breeding & Genetics, University          | 10     |
|     | College of Agriculture & Environmental Sciences, Islamia University, Bahawalpur            |        |
| 30  | Dr. Ghulam Muhammad Ali, Senior Director, National Agricultural Research Centre, National  | 81     |
|     | Institute for Genomics and Advanced Biotechnology, Park Road, PO NIH, Islamabad            |        |
| 31  | Muhammad Yousuf Memon, Director, Pakistan Atomic Energy Commission, Nuclear                | 12     |
|     | Institute of Agriculture (NIA), Tandojam-Sindh                                             |        |

## 2.5.2 Production of pre-basic seed of commercial varieties

Pre-basic seed of seven commercial cotton varieties of CCRI, Multan viz., CIM-496, CIM-506, CIM-554, CIM-573, *Bt*.CIM-598, *Bt*.CIM-599 *Bt*.CIM-602 and *Bt*.CIM-600, CIM-620, was produced. The detail is given in **Table 2.41**.

Table 2.41 Detail of pre-basic seed produced during 2017-18

| - unio 2   | , cood b. caacoa aag =0      |
|------------|------------------------------|
| Variety    | Pre-basic seed produced (kg) |
| CIM-496    | 67                           |
| CIM-506    | 35                           |
| CIM-554    | 409                          |
| CIM-573    | 151                          |
| Bt.CIM-598 | 124                          |
| Bt.CIM-599 | 10                           |
| Bt.CIM-602 | 267                          |
| CIM-620    | 436                          |
|            |                              |

### 2.6 Pak-US ICARDA Cotton Project-1198-1 at CCRI Multan

## 2.6.1 Use of USA cotton germplasm for the evolution of CLCV resistant /tolerant varieties.

In US cotton germplasm imported through Pak –US ICARDA Cotton Project a total of 86 accessions out of 3277 were found to be resistant against CLCuV. These 86 accessions were rationed at CCRI Multan from the last 4 years. Out of these 86 accessions flower induction were started in only five accessions in the month of December – January 2018 as detailed below:

| Sr.<br>No. | Set<br>No. | Year  | No of total<br>Accessions | Resistant accessions | Accessions having buds and flower formation |
|------------|------------|-------|---------------------------|----------------------|---------------------------------------------|
| 1          | С          | 2013  | 200                       | 9                    | 0                                           |
| 2          | D          | 2013  | 200                       | 25                   | 0                                           |
| 3          | K          | 2014  | 200                       | 5                    | 1                                           |
| 4          | N          | 2014  | 600                       | 47                   | 4                                           |
|            |            | Total | 1200                      | 86                   | 5                                           |

All these accessions are maintaining properly in field condition for proper buds and flower formation. Few accessions have some buds and flowers formation has been started recently in 2018 which are given as In Set K only one accession i.e. USG-618/14 are having flowers and bolls formations while in Set N there were 4 accessions i.e. USG-2131/14 having only one plant which has flower formations.USG-2269/14 having

buds as well as flower formation, while USG-2471/14 and USG-2476/14 are having flower formation All the flowers were analyzed for their pollens fertility and it was found that all the pollens of these flowers were unfertile. However all these accessions are under observation in field conditions and efforts are made to get fertile flower which will be immediately used in our breeding programs.

### 2.7 Biotechnology Group

A working group on Biotechnology was constituted by the Director CCRI, Multan with the following composition:

1. Dr. Muhammad Idrees Khan, SSO/Head, PB&G Section **Group Leader** Ms. Sabahat Hussain, SSO/Head, Plant Pathology Section 2. Member 3. Mr. Khamdim Hussain, SO (Breeding) Member Madam Farzana Ashraf, SO (Cytogenetics) Member 4. Dr. Fazl-I- Davim Shehzad, SO (Breeding) 5. Member Hafiz Muhammad Imran, SO (Cytogenetics) Member 6.

The major objectives of the biotechnology are as follow:

- i) Identification of DNA markers linked to various traits of cotton
- ii) Utilization of DNA markers for MAS
- iii) Quantification of Bt. Toxin in various genotype
- iv) Karyotyping.

## Objective achieved

- 1. Stream line the equipments and the required chemicals.
- 2. Calibration of different equipments.
- 3. Repair of equipments which were out of order.
- 4. Established the protocols for different procedures like DNA extraction, gel electrophoresis etc.
- 5. Preparation of different stock solution and working solution.
- 6. Genomic DNA extraction from cotton leaves.
- Gel electrophoresis for DNA analysis.
- 8. DNA quantification on the Spectrophotometer.
- 9. Qualitative and quantification testing of cotton sample through ELISA for Cry1Ac. testing of seed cotton for GMO status.

## 2.8 National Technology Testing Trial at CCRI Multan 2017-18

### 2.8.1 Research Team:

1. Dr. Zahid Mahmood : Director/Chairman

2. Dr. Muhammad Idrees Khan : Convener

Head, Plant Breeding & Genetics Section

3. Dr. Muhammad Naveed Afzal : Member

Head, Agronomy Section

4. Dr. Rabia Saeed : Member

Head, Entomology Section

5. Madam Sabahat Hussain : Member

Head, Plant Pathology Section

6. Hafiz Abdul Haq : Member

Scientific Officer, Plant Breeding & Genetics Section

#### 2.8.2 Introduction

Cotton (*G. hirsutum L*) is the most economically important crop of our country upon which total economy of our country relies directly or indirectly. Cotton is the silver gold of Pakistan's agriculture which earns a good fortune for the country in the form of foreign exchange. The demand for high yield and better fiber quality has been increased with the changing patron of globalization of cotton production. The development of new cotton varieties is one of the most important factors for increasing cotton yield, early maturing with desirable fiber traits and

resistant/tolerant to insect pest, diseases and having low input cost specially in eradication of weeds.

There are so many yield limiting factors in cotton. Weeds are one of them which are unwanted plants that comprise about 0.1% of the agro system of the world flora. Weed acts as a major factor for declining crop yield by competing for resources such as water, light and nutrients. Approximately 30% of yield losses in cotton are caused by weeds. Therefore the control of weeds remains a major concern for crop producers. In past, application of multiple chemicals was required to manage weed by different conventional means like hand weeding, crop rotations and polyculture because no synthetic chemicals were available at that time. The control methods then shifted towards high input and targeted oriented methods after the discovery of synthetic herbicides in 1930. In cotton Glyphosate resistant was first commercialized in 1997 by Monsanto and later on the cultivated land for the Glyphosate Resistant Cotton (GRC) was increased spectacularly. The adoption of transgenic crops also known as GMOs and biotech crops has been rapid and impressive worldwide. Adoption of Glyphosate resistant crops has also significant economic efforts in agriculture. Herbicide resistant cotton (Gossypium hirsutum) comprises one of the largest genetically modified crops. Cotton yield has been badly affected by the crop weed competition during the first few weeks after planting. For this purpose a trial was design by Directorate of Research PCCC Multan to test new strains developed by different scientist throughout the country through conventional/molecular breeding and transformations which have Glyphosate tolerant/resistant genes (GTG). To check out the performance of these strains, a trial with the name of National Technology Testing Trial (NTTT) at CCRI Multan was conducted. Detail study of the trial is given as under.

### 2.8.3 Material and Methods

National Technology Testing Trail (NTTT) of Pakistan central cotton committee was conducted at CCRI, Multan during 2017-18 under the supervision of Directorate of Research. Ten cotton genotypes including GMOs and non GMOs were tested in coded form. Basically the trial was design to test the Glyphosate resistant genotypes and to know the effect of the weedicides on the crop plant as well as on the weeds. Sowing was done on 28<sup>th</sup> May 2017 in a Randomized Complete Block Design (RCB) with three replications. Plot size was kept as 20×10 with 75 cm row to row distance and 12 cm plant to plant distance. Data were recorded on the agronomic, yield and fiber traits and standard agronomic and plant protection measures were applied. Detail is given in Table-1.

Table 1 Field operation of National Technology Testing Trial at CCRI Multan 2017-18

| Trial               | Operation           |
|---------------------|---------------------|
| NTTT                | NTTT-1 - NTTT-10    |
| Sowing date         | 28/5/2017           |
| Location            | CCRI, Multan        |
| Number of genotypes | 10                  |
| Replications        | 03                  |
| Design/Layout       | RCBD                |
| Plot size           | 20'x10' =1/538.2 ha |

### 2.8.3 Germination percentage

The repeat-wise germination percentage data (as given in Table-2) shows that NTTT-2, NTTT-5 and NTTT-6 were having very good seed germination in percentage. Similarly NTTT-3, NTTT-4, NTTT-7, NTTT-8, NTTT-9 and NTTT-10 have good performance in term of seed germination percentage while NTTT-1 was having poor germination percentage.

Table 2 Germination Percentages of NTTT at CCRI, Multan during 2017-18

| Sr. | Varieties | R         | ереа    | Average |         |
|-----|-----------|-----------|---------|---------|---------|
| No. |           | 1         | 2       | 3       |         |
| 1   | NTTT-1    | V. Poor   | V. Poor | Good    | Poor    |
| 2   | NTTT-2    | Excellent | V. Good | V. Good | V. Good |
| 3   | NTTT-3    | V. Good   | Good    | Good    | Good    |
| 4   | NTTT-4    | Excellent | Good    | Good    | Good    |
| 5   | NTTT-5    | V. Good   | V. Good | V. Good | V. Good |
| 6   | NTTT-6    | V. Good   | V. Good | V. Good | V. Good |
| 7   | NTTT-7    | Poor      | Good    | Good    | Good    |
| 8   | NTTT-8    | Good      | Good    | Good    | Good    |
| 9   | NTTT-9    | Good      | Good    | Good    | Good    |
| 10  | NTTT-10   | Good      | V. Good | Good    | Good    |

Very poor = <30%, Poor = 30-49%, Good = 50-75%, V. good = 80-90, & Excellent = >90%,

### 2.8.4 Stunting data

Stunting data of the plants were taken just after 20 days of sowing. Stunting data were recorded using to the formula given below.

% age of stunted plants = number of stunted plant /total number plant per plot x 100

According to the results, maximum stunting percentage of 2.46% were observed in genotype NTTT-1 followed by NTTT-4 and NTTT-8 with 0.85 and 0.65% respectively. While the remaining all the genotypes were having 0.00% stunted plants Table 3.

Table 3 Stunting percentage of NTT Trial at CCRI, Multan 2017-18

| Table Committee |           |              |                |            |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--------------|----------------|------------|--|
| S. No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Genotypes | Total plants | Stunted plants | Percentage |  |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NTTT-1    | 81           | 2              | 2.46       |  |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NTTT-2    | 465          | 0              | 0.00       |  |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NTTT-3    | 489          | 0              | 0.00       |  |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NTTT-4    | 351          | 3              | 0.85       |  |
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NTTT-5    | 416          | 0              | 0.00       |  |
| 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NTTT-6    | 546          | 0              | 0.00       |  |
| 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NTTT-7    | 585          | 0              | 0.00       |  |
| 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NTTT-8    | 456          | 3              | 0.65       |  |
| 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NTTT-9    | 516          | 0              | 0.00       |  |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NTTT-10   | 564          | 0              | 0.00       |  |

### 2.8.5 Pathological study (CLCuV)

Pathological study of the National Technology Testing trial relating to cotton leaf curl virus disease were taken by the pathology section of Central Cotton Research Institute Multan. The data was first recorded 60, 90 and 120 days after sowing as shown in Table 4. For this purpose disease percentage was calculated first on 60, 90 and 120 days based data and then the disease severity and disease index in percentage were calculated by using the formula

Disease index  $\% = \underline{\text{Disease incidence} \times \text{Disease severity}}$ 

4

While disease incidence is the sum of all diseased plants divided by total number of plants multiplied by hundred or can simply be calculated by the following formula

Disease incidence = <u>Sum of all diseased plants</u> ×100
Total number of plants

Disease severity = Disease rating scale i.e. 0 - 4 x number of diseased plants

Sum total of diseased plants

According to the data recorded on all 60, 90 and 120 days bases, maximum disease index was found as 56.74% in NTTT-6 and minimum was found as 51.77 % in NTTT-7 while the remaining all the genotypes were having the percentage of disease index ranging from 52.09 to 56.10 which shows that all the genotypes were highly susceptible against cotton leaf curl virus after 120 days of sowing details are given in Table-3.

Table 3 Screening of NTTT genotypes against CLCuV disease after 60, 90 and 120 days of sowing.

| Treatments | Disease<br>(%)<br>60 DAS | Disease<br>(%)<br>90DAS | Disease<br>(%)<br>120 DAS | Av. Disease<br>Severity (%) | Disease<br>Index (%) | Category |
|------------|--------------------------|-------------------------|---------------------------|-----------------------------|----------------------|----------|
| NTTT-1     | -                        | -                       | -                         | -                           | -                    | -        |
| NTTT-2     | -                        | -                       | -                         | -                           | -                    | -        |
| NTTT-3     | 36.83                    | 97.14                   | 100                       | 2.08                        | 52.09                | H.S      |
| NTTT-4     | -                        | -                       | -                         | -                           | -                    | -        |
| NTTT-5     | -                        | -                       | -                         | -                           | -                    | -        |
| NTTT-6     | 56.09                    | 97.62                   | 100                       | 2.27                        | 56.74                | H.S      |
| NTTT-7     | 33.57                    | 96.97                   | 100                       | 2.07                        | 51.77                | H.S      |
| NTTT-8     | 35.28                    | 88.51                   | 100                       | 2.17                        | 54.26                | H.S      |
| NTTT-9     | 38.67                    | 88.61                   | 100                       | 2.19                        | 54.83                | H.S      |
| NTTT-10    | 38.70                    | 87.14                   | 100                       | 2.21                        | 55.22                | H.S      |

Note; Immune = 0, highly tolerant = 0-10, Tolerant = 10-30, Susceptible = 30-50, highly susceptible = > 50.

## 2.8.6 Weedicides application 1<sup>st</sup> spray

Weedicides application was carried out to check out the performance of the genotypes against weeds and to identify the presence of the Glyphosate resistance gene in these genotypes. For this purpose 25 days after sowing on 25<sup>th</sup> June 2017 "CLEAN UP" (TARZAN) was applied at the rate of 1000 ml per acre to replication 1, 2 and 3 respectively. Mortality data was recorded seven days and twelve days after spraying. The data showed that late effect of the weedicides was observed on the genotypes and four genotypes i.e. NTTT-1, NTTT-2, NTTT-4 and NTTT-5 were more affected while very less effect were observed on NTTT-8. The remaining five genotypes i.e. NTTT-3, NTTT-6, NTTT-7, NTTT-9 and NTTT-10 were not affected at all and shows complete resistance /tolerance against weedicide which confirmed the existence of Glyphosate tolerant gene (GTG) in these genotypes as shown in Table-4

Table 4 Applications of CLEAN UP (1<sup>st</sup>) Weedicide on NTT trial during 2017-18

| Weed       | Remarks       |               |                           |
|------------|---------------|---------------|---------------------------|
| Not effect | Less effected | More effected |                           |
| NTTT-3     | NTTT-8        | NTTT-1        | ]                         |
| NTTT-6     | -             | NTTT-2        | l sta effect was absenced |
| NTTT-7     | -             | NTTT-4        | Late effect were observed |
| NTTT-9     | -             | NTTT-5        |                           |
| NTTT-10    | -             | -             |                           |

Note: - 1st Weedicide spray was carried out on 25th of June 2017 at the rate of 1000 ml in all the repeats

Not affected=0-5%., Less affected = 10-50% and severely affected = >60

### 2.8.7 Mortality data

Data on number of plant damaged/killed by the weedicides and recovery of the plants seven and twelve days after weedicides application was recorded with the help of the agronomy section. For this purpose total number of plant per dibble in a plot were counted and then the effected plants and their mortality percentage was calculated as

### Mortality percentage = Number of effected plants /total number of plants.

On average base in all the three replications maximum mortality percentage was observe in genotypes i.e. NTTT-1, NTTT-2, NTTT-4 and NTTT-5 while in genotypes NTTT-8 few damaged plants were observed. Less than 1 percent damaged plant was recorded in genotypes NTTT-3, 6, 7, 9 and NTTT-10. Detail is given in Table-5.

### 2.8.8 Agronomic studies

#### Weeds data

Data on number of weeds and weed type and their dry weight was recorded by the agronomy section of the institute. The data were recorded 55 days after sowing after the application of first spray of weedicide. Similarly weed types were also identified by separating narrow leaf and broad leaf weeds and dry weight was calculated. Mostly deela, itset, Qulfa and Tandla weeds were found in the whole field, Detail is given in Table-5.

Table 5 Mortality percentage Data after 7 and 12 days of Spray in NTT Trial 2017-18

| Genotypes | Total plants | Affected plants after 7 days | Mortality percentage | Dead plants after 12 days | Mortality percentage |
|-----------|--------------|------------------------------|----------------------|---------------------------|----------------------|
| NTTT-1    | 81           | 70                           | 86.4                 | 70                        | 86.4                 |
| NTTT-2    | 465          | 320                          | 68.8                 | 320                       | 68.8                 |
| NTTT-3    | 489          | 3                            | 0.61                 | 1                         | 0.2                  |
| NTTT-4    | 351          | 280                          | 79.7                 | 280                       | 79.7                 |
| NTTT-5    | 416          | 342                          | 82.2                 | 342                       | 82.2                 |
| NTTT-6    | 546          | 5                            | 0.9                  | 1                         | 0.2                  |
| NTTT-7    | 585          | 5                            | 0.8                  | 2                         | 0.3                  |
| NTTT-8    | 456          | 15                           | 3.2                  | 7                         | 1.5                  |
| NTTT-9    | 516          | 3                            | 0.5                  | 2                         | 0.3                  |
| NTTT-10   | 564          | 3                            | 0.5                  | 1                         | 0.2                  |

Table 5 Weed intensity observed 55 days after sowing in NTTT at CCRI, Multan during 2017-18

|          | during zorr 10 |                                                  |                                               |
|----------|----------------|--------------------------------------------------|-----------------------------------------------|
| Plot No. | Genotypes      | Dry Weight Of narrow leaves (g m <sup>-2</sup> ) | Dry Weight of Broad Leaf (g m <sup>-2</sup> ) |
|          |                | (9 111 )                                         | (9 111 )                                      |
| 1        | NTTT-1         | 80.6                                             | 19.6                                          |
| 2        | NTTT-2         | 78.5                                             | 25.6                                          |
| 3        | NTTT-3         | 83.9                                             | 27.1                                          |
| 4        | NTTT-4         | 73.7                                             | 15.8                                          |
| 5        | NTTT-5         | 80.0                                             | 33.3                                          |
| 6        | NTTT-6         | 74.0                                             | 35.4                                          |
| 7        | NTTT-7         | 63.5                                             | 32.6                                          |
| 8        | NTTT-8         | 72.5                                             | 35.0                                          |
| 9        | NTTT-9         | 80.0                                             | 36.8                                          |
| 10       | NTTT-10        | 42.5                                             | 36.8                                          |

## 2<sup>nd</sup> spray

Another spray was applied on 25<sup>th</sup> July 2017 within 60 days after sowing at the rate of 1000 ml acre<sup>-1</sup> in all the three repeats. An early effect of the spray was observed on all types of weeds and all the weeds were killed. As a result, four genotypes i.e. NTTT-1, NTTT-2, NTTT-4 and NTTT-5 were severely affected and completely damaged in all three repeats which indicate the absence of the GT genes in these lines (Table 6). After the spray, these genotypes did not show any resistance against weedicides while the remaining genotypes survived which shows the presence of Glyphosate tolerant (GT) genes in these genotypes.

Table 6 Application of CLEAN UP (2<sup>nd</sup>) Spray on NTT Trial at CCRI Multan 2017-18

| Weedicide dose (1000ml p | Remarks       |                   |                            |
|--------------------------|---------------|-------------------|----------------------------|
| Not affected             | Less affected | Severely affected |                            |
| NTTT-3                   | -             | NTTT-1            |                            |
| NTTT-6                   | -             | NTTT-2            | <b>-</b> . " .             |
| NTTT-7                   | -             | NTTT-4            | Early effect were observed |
| NTTT-8                   | -             | NTTT-5            | observed                   |
| NTTT-9                   | -             | -                 |                            |
| NTTT-10                  | -             | -                 |                            |

**Note**: 2<sup>nd</sup> Weedicides spray was applied on 25<sup>th</sup> of July, 2017 at the rate of 1000ml/acre to all the three replications. Not affected = 0%, severely affected = 80-100%.

## 2.8.9 ENTOMOLOGICAL STUDY

### **Insect/Pest Situation**

In this trial, 10 cotton strains were evaluated for tolerance/susceptibility to insect pest complex. Population of Jassid remained below ETL during July and August. Whitefly population remained below ETL in the strains during July and August except NTTT-3. Thrips population remained below ETL on all the testing strains during study period (Table 7).

Table 7 Seasonal population of sucking insect pests on different strains in NTTT 2017-18

|         | Number of sucking insect pests per leaf |        |              |        |          |        |  |
|---------|-----------------------------------------|--------|--------------|--------|----------|--------|--|
| Strains | Jas                                     | ssid   | sid Whitefly |        | y Thrips |        |  |
|         | July                                    | August | July         | August | July     | August |  |
| NTTT-1  | 0.0                                     | 0.0    | 0.2          | 0.0    | 0.0      | 0.0    |  |
| NTTT-2  | 0.0                                     | 0.0    | 0.1          | 0.0    | 0.0      | 0.0    |  |
| NTTT-3  | 0.0                                     | 0.2    | 0.2          | 5.7    | 0.0      | 0.8    |  |
| NTTT-4  | 0.4                                     | 0.0    | 0.2          | 0.0    | 0.0      | 0.0    |  |
| NTTT-5  | 0.0                                     | 0.0    | 0.2          | 0.0    | 0.0      | 0.0    |  |
| NTTT-6  | 0.0                                     | 0.0    | 0.6          | 2.4    | 0.0      | 0.3    |  |
| NTTT-7  | 0.8                                     | 0.1    | 0.3          | 2.7    | 0.3      | 0.8    |  |
| NTTT-8  | 0.2                                     | 0.1    | 0.5          | 3.8    | 0.0      | 0.5    |  |
| NTTT-9  | 0.4                                     | 0.0    | 0.6          | 2.3    | 0.0      | 0.4    |  |
| NTTT-10 | 0.5                                     | 0.0    | 0.1          | 1.8    | 0.0      | 3.1    |  |

Spotted/American bollworm infestation and live larvae remained zero on all tested strains during the study period. Moreover, pink bollworm infestation and live larvae were also zero in all strains table 8 and 9.

Table 8 Spotted/ American bollworms damage and larval population on different strains of NTTT during 2017-18 at CCRI Multan.

| Strains |          | <u> </u>     |             |                         |
|---------|----------|--------------|-------------|-------------------------|
|         | Bollworm | damage % age | Spotted bol | llworm larvae /25 plant |
|         | Imm      | Mat          | lmm         | Mat                     |
| NTTT-1  | 0.0      | 0.0          | 0.0         | 0.0                     |
| NTTT-2  | 0.0      | 0.0          | 0.0         | 0.0                     |
| NTTT-3  | 0.0      | 0.0          | 0.0         | 0.0                     |
| NTTT-4  | 0.0      | 0.0          | 0.0         | 0.0                     |
| NTTT-5  | 0.0      | 0.0          | 0.0         | 0.0                     |
| NTTT-6  | 0.0      | 0.0          | 0.0         | 0.0                     |
| NTTT-7  | 0.0      | 0.0          | 0.0         | 0.0                     |
| NTTT-8  | 0.0      | 0.0          | 0.0         | 0.0                     |
| NTTT-9  | 0.0      | 0.0          | 0.0         | 0.0                     |
| NTTT-10 | 0.0      | 0.0          | 0.0         | 0.0                     |

Table 9 Pink bollworms damage and larvae population on different strains in NTTT during 2017-18 at CCRI Multan

| Strains |                            |                            |
|---------|----------------------------|----------------------------|
|         | Pink Bollworm damage % age | Pink Bollworm larval % age |
| NTTT-1  | 0.0                        | 0.0                        |
| NTTT-2  | 0.0                        | 0.0                        |
| NTTT-3  | 0.0                        | 0.0                        |
| NTTT-4  | 0.0                        | 0.0                        |
| NTTT-5  | 0.0                        | 0.0                        |
| NTTT-6  | 0.0                        | 0.0                        |
| NTTT-7  | 0.0                        | 0.0                        |
| NTTT-8  | 0.0                        | 0.0                        |
| NTTT-9  | 0.0                        | 0.0                        |
| NTTT-10 | 0.0                        | 0.0                        |

#### 2.8.10 Plant characters

Data were recorded on various qualitative and quantitative plant characters i.e. plant hairiness, leaf size and color, boll size, bolls shape and boll opening, segregation/uniformity, earliness, plant shape and plant height (Table 10). The data shows that almost all of the genotypes were found hairy; leaf size ranged from small to small medium, leaf color ranged from light green to green or dark green. Boll size was small to medium, boll shapes were rounds and boll opening were normal. Among the study traits plant shape were found as compact and monopodial while plant stature were observed as medium for all the genotypes. No earliness was seen among any of the studied genotype and almost all were found as late in term of maturity while uniformity was found among all the genotypes.

Table 10 Plant characteristics of NTTT at CCRI Multan during 2017-18

| Verity<br>Code | Hairi-<br>ness | Leaf<br>size     | Leaf<br>color | Boll size | Segrega-<br>tion/<br>uniformity | Boll<br>shape | Boll<br>Opening | Plant<br>shape | Early/<br>late | Plant<br>stature/<br>height |
|----------------|----------------|------------------|---------------|-----------|---------------------------------|---------------|-----------------|----------------|----------------|-----------------------------|
| NTTT-1         | -              | -                | -             | -         | -                               | 1             | -               | -              | -              | -                           |
| NTTT-2         | -              | -                | -             | -         | -                               | -             | -               | -              | -              | -                           |
| NTTT-3         | Hairy          | Small            | Green         | Medium    | Uniform                         | Round         | Medium          | Compact        | Late           | Medium                      |
| NTTT-4         | -              | -                | -             | -         | -                               | -             | -               | -              | -              |                             |
| NTTT-5         | -              | -                | -             | -         | -                               | -             | -               | -              | -              | -                           |
| NTTT-6         | Hairy          | Medium           | D. Green      | Medium    | Uniform                         | Round         | Medium          | Compact        | Late           | Medium                      |
| NTTT-7         | Hairy          | Medium/<br>Broad | D. Green      | S.Medium  | Uniform                         | Round         | Medium          | Monopodial     | Late           | Medium                      |
| NTTT-8         | Hairy          | Small/<br>Medium | L. Green      | S.Medium  | Uniform                         | Round         | Medium          | Monopodial     | Late           | Medium                      |
| NTTT-9         | Hairy          | Small/<br>Medium | Green         | Medium    | Uniform                         | Round         | Medium          | Monopodial     | Late           | Medium                      |
| NTTT-10        | Hairy          | Small/<br>Medium | Green         | Medium    | Uniform                         | Round         | Medium          | Monopodial     | Late           | Medium                      |

### 2.8.11 Boll weight (g)

For average boll weight from each repeat, 25 good bolls were taken and then weighted for average boll weight Table 11.

### Boll weight (g) = $\underline{\text{Total weight of 25 bolls (g)} \times 100}$ Number of bolls

The results showed that maximum average boll weights of 3.0 g were revealed by the genotypes NTTT-9 and NTTT-10 respectively. Minimum boll weight of 2.6 g was recorded in genotype NTTT-6 while the genotypes NTTT-3 with 2.8 g and NTTT-7 and NTTT-8 with 2.9 g respectively were having the medium boll weight.

Table 11 Average Boll weight of NTTT at CCRI Multan during 2017-18

| 14510 11 711 |         |     |     | altair aariing 2017 |         |
|--------------|---------|-----|-----|---------------------|---------|
| Varieties    | Repeats |     | t s | Total Averag        |         |
| varieties    | 1       | 2   | 3   | Total               | Average |
| NTTT-1       | -       | -   | -   | -                   | -       |
| NTTT-2       | -       | -   | -   | -                   | -       |
| NTTT-3       | 2.8     | 2.7 | 2.8 | 8.3                 | 2.8     |
| NTTT-4       | -       | -   | -   | -                   | -       |
| NTTT-5       | -       | -   | -   | -                   | -       |
| NTTT-6       | 2.6     | 2.7 | 2.5 | 7.8                 | 2.6     |
| NTTT-7       | 3.0     | 2.9 | 2.8 | 8.7                 | 2.9     |
| NTTT-8       | 2.9     | 2.9 | 2.8 | 8.6                 | 2.9     |
| NTTT-9       | 3.1     | 3.0 | 3.0 | 9.1                 | 3.0     |
| NTTT-10      | 2.9     | 3.0 | 3.1 | 9.0                 | 3.0     |

### 2.8.12 Seed cotton yield (kgh<sup>-1</sup>)

Repeat wise data of seed cotton yield in kgha<sup>-1</sup> is given in Table-12. A look into the data table shows that the average yield performance of the genotype NTTT-7 was the best among all the genotypes which produced 1540 kg yield. NTTT-10 with 1483 kg was found as the second best genotype in term of yield followed by the genotypes NTTT-9 with 1368, NTTT-8 with 1320 and NTTT-3 with 1248 kgs of seed cotton yield respectively. Minimum seed cotton yield of 1054 kg was observed for the genotype NTTT-6.

Table-12 Consolidate data of seed cotton yield in kg h<sup>-1</sup> of NTTT at CCRI Multan 2017-18

|           | R e  |      | s    | _       |
|-----------|------|------|------|---------|
| Varieties | 1    | 2    | 3    | Average |
| NTTT-1    | -    | -    | -    | -       |
| NTTT-2    | -    | -    | -    | -       |
| NTTT-3    | 1393 | 1221 | 1130 | 1248    |
| NTTT-4    | -    | -    | -    | -       |
| NTTT-5    | -    | -    | -    | -       |
| NTTT-6    | 1130 | 947  | 1087 | 1054    |
| NTTT-7    | 1603 | 1512 | 1506 | 1540    |
| NTTT-8    | 1367 | 1361 | 1232 | 1320    |
| NTTT-9    | 1517 | 1420 | 1167 | 1368    |
| NTTT-10   | 1598 | 1453 | 1399 | 1483    |

### 2.8.13 Plant population

After picking the repeat wise data of number of plant hectare<sup>-1</sup> is given in Table-13. The data shows that maximum average numbers of plants were recorded as 34073 per hectare in NTTT-7 followed by NTTT-10 with 33177 plants. While, 32459 and 30666 number of plants per hectare were recorded in NTTT-6 and NTTT-7 respectively. Minimum and least number of 26721 plants was recorded in NTTT-8.

Table 13 Consolidated data of Plant populations (No. of plants h<sup>-1</sup>) of NTTT 2017-18

| Varieties | Repeat |       | S     | Average |
|-----------|--------|-------|-------|---------|
| varieties | 1      | 2     | 3     |         |
| NTTT-1    | -      | -     | -     | -       |
| NTTT-2    | -      | -     | -     | -       |
| NTTT-3    | 31204  | 29052 | 26900 | 29052   |
| NTTT-4    | -      | -     | -     | -       |
| NTTT-5    | -      | -     | -     | -       |
| NTTT-6    | 34970  | 33356 | 29052 | 32459   |
| NTTT-7    | 35508  | 33356 | 33356 | 34073   |
| NTTT-8    | 27438  | 27976 | 24748 | 26721   |
| NTTT-9    | 32280  | 30666 | 29052 | 30666   |
| NTTT-10   | 34970  | 32280 | 32280 | 33177   |

### 2.8.14 Lint percentage (GOT %)

A look at the data presented in Table-14 shows that on average bases, the genotype NTTT-8 was having maximum lint percentage of 38.1 % followed by NTTT-9 with 38.0%. Among the studied genotypes for the said character, NTTT-3 was having 37.8 % GOT and that of NTTT-10 was found 37.6 %. Minimum average lint percentages of 37.2 % were observed for the genotypes NTTT-6 and NTTT-7 respectively.

Table 14 Average GOT% of NTTT at CCRI Multan during 2017-18

| Varieties R |      | e p e a t | S    | Average |
|-------------|------|-----------|------|---------|
| varieties   | 1    | 2         | 3    |         |
| NTTT-1      | -    | -         | -    | -       |
| NTTT-2      | -    | -         | -    | -       |
| NTTT-3      | 37.9 | 36.6      | 38.8 | 37.8    |
| NTTT-4      | -    | -         | -    | -       |
| NTTT-5      | -    | -         | -    | -       |
| NTTT-6      | 36.6 | 37.1      | 38.0 | 37.2    |
| NTTT-7      | 38.1 | 37.8      | 35.8 | 37.2    |
| NTTT-8      | 38.4 | 37.2      | 38.6 | 38.1    |
| NTTT-9      | 38.8 | 38.2      | 37.1 | 38.0    |
| NTTT-10     | 38.1 | 37.7      | 37.1 | 37.6    |

#### 2.8.15 Other Fibre Characters

In addition to staple length, other fibre characters like micronaire value and fibre strength were also determined from the composite sample of the replicated National Technology Testing trial at the fiber technology section. The details of these characteristics are given below.

### Staple Length

The average data of three replications presented in Table-15 from the composite samples of the trial revealed that maximum staple length of 26.0 mm was illustrated by the genotype NTTT-8 followed by NTTT-10 with 25.7 mm, NTTT-9 with 25.6 mm and NTTT- 3 with 25.0 mm of staple length. Minimum staple length of 24.5 mm and 24.9 mm were recorded for NTTT-6 and NTTT-7 respectively. The data shows that all the genotypes were having staple length below the standard (28.00 mm) as recommended by Punjab seed council for the approval of a variety.

Table 15 Average staple length (mm) of NTTT at CCRI Multan during 2017-18

| Varieties |      | Repea | t s  | Average |
|-----------|------|-------|------|---------|
| varieties | 1    | 2     | 3    | -       |
| NTTT-1    | -    | -     | -    | -       |
| NTTT-2    | -    | -     | -    | -       |
| NTTT-3    | 25.0 | 24.9  | 25.2 | 25.0    |
| NTTT-4    | -    | -     | -    | -       |
| NTTT-5    | -    | -     | -    | -       |
| NTTT-6    | 24.1 | 23.8  | 25.5 | 24.5    |
| NTTT-7    | 24.9 | 24.8  | 25.0 | 24.9    |
| NTTT-8    | 26.3 | 25.9  | 25.8 | 26.0    |
| NTTT-9    | 26.1 | 25.5  | 25.1 | 25.6    |
| NTTT-10   | 24.9 | 26.2  | 25.9 | 25.7    |

#### Micronaire value

The data of micronaire value presented in Table-16 shows that all the genotypes were having the micronaire values ranging from 5.1 to  $5.3~\mu g$  inch<sup>-1</sup> which is almost above the standard i.e. from 3.8 to  $4.9~\mu g$  inch<sup>-1</sup> which shows that these genotypes were having the coarse fiber. Repeat wise average data for the fiber fineness (micronaire value) of all the genotypes is given below in Table -16.

Table 16 Consolidated data of Micronaire value in (µg inch<sup>-1</sup>) of NTTT 2017-18

| Varieties | R e | peat | S   | Avorago |
|-----------|-----|------|-----|---------|
| varieties | 1   | 2    | 3   | Average |
| NTTT-1    | =   | -    | -   | -       |
| NTTT-2    | -   | -    | -   | -       |
| NTTT-3    | 5.2 | 5.2  | 5.3 | 5.2     |
| NTTT-4    | -   | -    | -   | -       |
| NTTT-5    | -   | -    | -   | -       |
| NTTT-6    | 5.3 | 4.9  | 5.1 | 5.1     |
| NTTT-7    | 5.3 | 5.4  | 5.2 | 5.3     |
| NTTT-8    | 5.3 | 5.2  | 4.8 | 5.1     |
| NTTT-9    | 5.2 | 5.2  | 5.4 | 5.3     |
| NTTT-10   | 5.1 | 5.1  | 5.5 | 5.2     |

#### Fibre strength

The data presented in Table-17 revealed that on the basis of three replications average, genotype NTTT-10 had maximum 26.1 fibre strength G/Tex followed by 25.9, 25.6, 25.5 and 25.2 G/Tex of NTTT-8, NTTT-3 NTTT-9 and NTTT-7 respectively. Minimum fibre length of 24.9 G/Tex was shown by the genotype NTTT-6. The remaining four genotypes i.e. NTTT-1, NTTT-2, NTTT-4 and NTTT-5 were already smashed by the Glyphosate spray.

Table 17 Consolidated data of Fibre Strength in (G/Tex) of NTTT during 2017-18

| Variation | R e  | peat | S    | A       |
|-----------|------|------|------|---------|
| Varieties | 1    | 2    | 3    | Average |
| NTTT-1    | -    | -    | -    | -       |
| NTTT-2    | -    | -    | -    | -       |
| NTTT-3    | 25.8 | 26.0 | 25.0 | 25.6    |
| NTTT-4    | -    | -    | -    | -       |
| NTTT-5    | -    | -    | -    | -       |
| NTTT-6    | 24.4 | 23.7 | 26.5 | 24.9    |
| NTTT-7    | 26.0 | 24.8 | 24.9 | 25.2    |
| NTTT-8    | 26.2 | 25.8 | 25.8 | 25.9    |
| NTTT-9    | 25.1 | 26.0 | 25.3 | 25.5    |
| NTTT-10   | 25.8 | 27.1 | 25.5 | 26.1    |

\_\_\_\_\_

### 3. CYTOGENETICS

Cytogenetics section is working to combat diverse upcoming biotic and abiotic intimidation. The main objectives include transferring auspicious genes of the wild species to the cultivated cotton for commercial exploitation and to study inter and intragenomic relationships in the genus *Gossypium*. During the past many years, cotton leaf curl virus (CLCuV) has been the most damaging biotic factor in Pakistan that results in severe production losses, but now pink boll worm is also second most threatening factor in cotton growing areas. Dusky and red cotton bugs are also becoming major pests of cotton. On trivial lands raising drought tolerant varieties is a far cry. Keeping in view all these factors, Cytogenetics section is working on introgression to transfer the disease resistance, insect resistance, drought tolerance, heat tolerance and better fiber quality from wild species in cultivated cotton.

| Specie Name       | Special features                                                                 |  |  |  |
|-------------------|----------------------------------------------------------------------------------|--|--|--|
| G. arboreum       | Biotic & a biotic resistance                                                     |  |  |  |
| G. anomalum       | Biotic & a biotic resistance with better fibre strength                          |  |  |  |
| G. herbaceum      | Biotic resistance                                                                |  |  |  |
| G. somalence      | Biotic resistance                                                                |  |  |  |
| G. areysianum     | Biotic resistance                                                                |  |  |  |
| G. longicalyx     | Biotic resistance                                                                |  |  |  |
| G. tomentosum     | Biotic & a biotic resistance                                                     |  |  |  |
| G. australe       | Gossypol free oil, better fibre quality, a biotic resistance, disease resistance |  |  |  |
| G. bickii         | Gossypol free oil,                                                               |  |  |  |
| G. aridum         | A biotic resistance,                                                             |  |  |  |
| G. herkensii      | A biotic resistance,                                                             |  |  |  |
| G. captis viridis | Disease resistance,                                                              |  |  |  |
| G. stockii        | Better fibre quality, drought resistance                                         |  |  |  |
| G. klotzchianum   | Pest resistance                                                                  |  |  |  |
| G. armorianum     | Disease resistance                                                               |  |  |  |
| G. ramondii       | Better fibre quality, disease resistance, a biotic resistance, boll worm         |  |  |  |
|                   | resistance, pest resistance                                                      |  |  |  |

Cytological studies of newly developed inter-specific hybrids were undertaken. Conversion of CLCuD resistant/tolerant lines in high yielding and big boll with desirable fibre traits using back cross method is under observation in different filial generations i.e.  $F_1$ ,  $F_2$ ,  $F_3$ ,  $F_4$ ,  $F_5$  and  $F_6$ . Besides different lint shades; material is developed which are in  $F_1$ ,  $F_2$  and  $F_3$  generations having desirable fibre traits. Search for aneuploids especially haploids remained in steps forward. Cyto material developed through interspecific hybridization was tested in single lines, micro varietal trials and varietal trials to evaluate their yield performance and other desirable characteristics.

For the year 2018-19, two Bt varieties viz., Cyto-313 & Cyto-515 and one non *Bt* variety (Cyto-225) of this section were included in National Coordinated Varietal Trials (NCVT). The case of both Bt varieties has been already submitted to National Biosafety Committee for the permission of their field trials.

## 3.1 Maintenance of Gossypium Germplasm

Twenty species of *Gossypium* (cultivated and wild) are being maintained in living herbarium at CCRI, Multan for exploitation in hybridization program. Among them sixteen species viz., *G. anomalum*  $B_1$ , *G. capitis viridis*  $B_4$ , *G. harknessii*  $D_{2\cdot 2}$ , *G. aridum*  $D_4$ , *G. gossypioides*  $D_6$ , *G. lobatum*  $D_7$ , *G. laxum*  $D_9$ , *G. stocksii*  $E_1$ , *G. somalense*  $E_2$ , *G. areysianum*  $E_3$ , *G. incanum*  $E_4$ , *G. longicalyx*  $F_1$ , & *G. nelsonii*  $G_3$  are diploid wild species. While *G. tomentosum*  $(AD)_3$  & *G. mustelinum*  $(AD)_4$  are tetraploid wild species. The species *G. herbaceum*  $A_1$  & *G. arboreum*  $A_2$ , (diploid); *G. hirsutum*  $(AD)_1$  is (tetraploid) are the cultivated species. In addition; twenty five interspecific hybrids (five diploid, six triploid, five tetraploid, two pentaploids and four hexaploid interspecific hybrids) and 3 tri species combinations are also maintained.

For the strengthening of *Gossypium* species in living herbarium at CCRI, Multan seeds of twelve wild species were germinated in an incubator at  $28 \pm 2^{\circ}$ C and then shifted in earthen pots in glass house. List of species is given in Table-3.1.

Approach grafting has been done to maintain the already existing wild species as well as the cuttings of all the species were planted in glass house to maintain the precious material. The detail is given in Table 3.2. Twenty grafts of eight wild species were prepared during month of September, 2017. All these grafted plants will be transplanted in field during the month of March, 2018.

Table 3.1. List of wild species planted in glass house through seed during 2017-18

| Sr. No. | Name of Species | No. of seeds planted | No. of seeds germinated |
|---------|-----------------|----------------------|-------------------------|
| 1       | G.davidsonii    | 5                    | 0                       |
| 2       | G.areysinum     | 4                    | 1                       |
| 3       | G.costulatum    | 5                    | 1                       |
| 4       | G.trilobum      | 5                    | 0                       |
| 5       | G.aridum        | 5                    | 2                       |
| 6       | G.australe      | 5                    | 1                       |
| 7       | G.raimondii     | 5                    | 1                       |
| 8       | G.longicalyx    | 5                    | 1                       |
| 9       | G.sturtianum    | 5                    | 1                       |
| 10      | G.marchanti     | 5                    | 1                       |
| 11      | G.bickii        | 5                    | 2                       |
| 12.     | G.klotzchianum  | 3                    | 1                       |
|         | Total           | 57                   | 12                      |

Table 3.2. List of wild Species maintained through approach grafting during 2017-18

| Sr. No. | Name of species   | No. of grafts |
|---------|-------------------|---------------|
| 1       | G.somalense       | 3             |
| 2       | G.incanum         | 4             |
| 3       | G.tomentosum      | 3             |
| 4       | G.bickii          | 2             |
| 5       | G.nelsonii        | 2             |
| 6       | G.anomalum        | 2             |
| 7       | G.capitis viridis | 2             |
| 8       | G.longicalyx      | 2             |
|         | Total             | 20            |



Fig 1. Approach grafting in G. somalence and G.bickii

A total of 401 cuttings of interspecific material were grown in permanent herbarium to maintain this precious material. Detail is given below in Table 3.3.

Table: 3.3 Cuttings of interspecific material

| Sr. No | Name of interspecific material   | No. of cuttings |
|--------|----------------------------------|-----------------|
| 1.     | G. herbacium (Red)               | 17              |
| 2.     | G.aridum                         | 10              |
| 3.     | G.gossypiodes                    | 15              |
| 4.     | G.laxum                          | 17              |
| 5.     | G.lobatum                        | 19              |
| 6.     | G.anomalum                       | 37              |
| 7.     | G.captis viridis                 | 22              |
| 8.     | G.tomentusum                     | 11              |
| 9.     | G.incanum                        | 10              |
| 10.    | G.lanceolatum                    | 30              |
| 11.    | G.areysianum                     | 11              |
| 12.    | 2( <i>G.hirs.x</i> anom.) (6n)   | 16              |
| 13.    | 2(G.hirs.x anom.) x G.barba (5n) | 16              |
| 14.    | G.hirs x 2(G.hirs.x anom.) (4n)  | 15              |
| 15.    | G.arbo.x G.somalense (2n)        | 15              |
| 16.    | 2(G.hirs.x G.anom.) x G.hirs.    | 16              |
| 17.    | G.hirs.(Red)x G.herkensii 3n     | 18              |
| 18.    | 2(G.arbo.x G.australe) (4n)      | 24              |
| 19.    | 2(G.arbo.x G.australe) (2n)      | 10              |
| 20.    | 2(G.arbo.x G.anom.) (4n)         | 20              |
| 21.    | 2(G.hirs.x G.bikii) 6n           | 10              |
| 22.    | G.arbo.x G.thurberii (2n)        | 18              |
| 23.    | G.hirs.x G.gossypiodes 6n        | 24              |
|        | Total                            | 401             |

### 3.2 Hybridization

### Inter-specific & Intraspecific hybridization

Inter-specific hybridization for integration of precious wild species genes (especially the genes for resistance against CLCuD) into the upland cotton were undertaken during the season. In intraspecific hybridization, conversion of CLCuD resistant/tolerant lines to high yielding and big boll with desirable fibre traits were carried out using back crossing during the cropping season. The detail of species hybridization is given in Table 3.4.

Table 3.4 Detail of Intra and Inter-specific crosses attempted during 2017-18

| Sr. | Parentage      | No. of Pollinations | No. of Bolls set |
|-----|----------------|---------------------|------------------|
| No. |                | attempted           |                  |
| 1   | SL-12 x SL-19  | 61                  | 22               |
| 2   | SL-12 × SL-20  | 44                  | 5                |
| 3   | SL-12 × SL 58  | 89                  | 6                |
| 4   | SL-12 x SL64   | 50                  | 10               |
| 5   | SL-12 x SL-65  | 62                  | 10               |
| 6   | SL-18 x SL-19  | 67                  | 3                |
| 7   | SL-18 x SL-20  | 45                  | 3                |
| 8   | SL-18 × SL-58  | 15                  | 1                |
| 9   | SL-18 x SL- 64 | 44                  | 2                |
| 10  | SL-18 x SL-65  | 58                  | 10               |
| 11  | SL-79 × SL-19  | 87                  | 17               |
| 12  | SL-79 × SL-20  | 66                  | 5                |
| 13  | SL-79 × SL-58  | 40                  | 11               |
| 14  | SL-79 x SL-64  | 57                  | 10               |
| 15  | SL-79 × SL-65  | 25                  | 7                |
| 16  | SL-369 × SL-19 | 61                  | 15               |
| 17  | SL-369 × SL-20 | 84                  | 5<br>3           |
| 18  | SL-369 × SL-58 | 86                  | 3                |
| 19  | SL-369 × SL-64 | 77                  | 4                |
| 20  | SL-369 × SL-65 | 44                  | 10               |
| 21  | SL-369 × SL-19 | 68                  | 3                |
| 22  | SL-369 × SL-20 | 60                  | 5                |
| 23  | SL-369 × SL-58 | 65                  | 2                |

| 25 S<br>26 C<br>27 C | SL-369 × SL-64<br>SL-369 × SL-65<br>Cyto-179 × Bahar 07<br>Cyto-179 × IR-NIBGE-08 | 30<br>22  | 8 2       |
|----------------------|-----------------------------------------------------------------------------------|-----------|-----------|
| 25 S<br>26 C<br>27 C | SL-369 × SL-65<br>Cyto-179 × Bahar 07<br>Cyto-179 × IR-NIBGE-08                   | 30        |           |
| 26 C<br>27 C         | Cyto-179 × Bahar 07<br>Cyto-179 × IR-NIBGE-08                                     |           | 7         |
| 27 C                 | Cyto-179 × IR-NIBGE-08                                                            |           |           |
|                      |                                                                                   |           | 16        |
| 1 28 I C             |                                                                                   | 22        | 8         |
|                      | Cyto-179 × C-7                                                                    | 25        | 12        |
|                      | Cyto-179 × C-9                                                                    | 30        | 7         |
|                      | Cyto-179 x C-18                                                                   | 34        | 7         |
|                      | Cyto-313 × Bahar07                                                                | 25        | 9         |
|                      | Cyto-313 x IR-NIBGE08                                                             | 27        | 6         |
|                      | Cyto-313 x C-7                                                                    | 30        | 4         |
|                      | Cyto-313 x C-9                                                                    | 30        | 5         |
|                      | Cyto-313 × C-18                                                                   | 39        | 3         |
|                      | Cyto-313 x Deebal                                                                 | 35        | 5         |
|                      | Cyto-313 x CIM-616                                                                | 25        | 3         |
|                      | Cyto-313 x CIM-629                                                                | 25        | 6         |
| 39 C                 | Cyto-515 x Bahar 07                                                               | 45        | 17        |
| 40 C                 | Cyto-515 x IR-NIBGE08                                                             | 37        | 9         |
| 41 C                 | Cyto-515 x C-7                                                                    | 34        | 11        |
| 42 C                 | Cyto-515 × C-9                                                                    | 41        | 11        |
|                      | Cyto-515 × C-18                                                                   | 43        | 11        |
|                      | Cyto-515 × CIM-616                                                                | 46        | 16        |
|                      | Cyto-515 × CIM-629                                                                | 40        | 12        |
|                      | Cyto-305 × CIM-516                                                                | 52        | 1         |
|                      | Cyto-305 × MVT-1                                                                  | 32        | 9         |
|                      | Cyto-305 × MV-6                                                                   | 35        | 4         |
|                      | Cyto-305 × MV-2                                                                   | 36        | 3         |
|                      | Cyto-177 × C-18                                                                   | 25        | 5         |
|                      | Cyto-178 × 179-5/17                                                               | 19        | 4         |
|                      | Cyto-178 × C-18                                                                   | 42        | 8         |
|                      | Cyto-179 x 142-5/17                                                               | 20        | 3         |
|                      | Cyto-177 x C-9                                                                    | 26        | 3         |
|                      | Cyto-178 × C-9                                                                    | 36        | 7         |
|                      | Cyto-313 × C-12                                                                   | 29        | 3         |
|                      | Cyto-313 x C-12                                                                   | 10        | 1         |
|                      | Cyto-177 × Cyto-515                                                               | 25        | 5         |
|                      | Cyto-177 x Cyto-515                                                               | 30        | 4         |
|                      |                                                                                   | 15        | 2         |
|                      | Cyto-161 × Cyto-124                                                               |           |           |
|                      | Cyto-161 × C-18<br>(G.arbo. x G.anom.) × G. hir                                   | 40<br>260 | 8<br>40*  |
|                      | (G.arbo. x G.anom.) x G. nir<br>(G.hir. x G.anom) x G.bar                         | 260       |           |
|                      |                                                                                   | 280       | 9<br>15** |
|                      | G.hir × G. hark) × G. hir                                                         | 80        | 15**      |
|                      | Brown lint cotton × FH-Lalazar                                                    | 90        | 25        |
|                      | Frown lint cotton × Cyto-225                                                      | 50<br>50  | 8         |
|                      | -1681 x C4                                                                        | 50        | 10        |
|                      | -1681 × Cyto-225                                                                  | 60        | 8         |
|                      | Cyto-313 × Cyto-225                                                               | 70        | 6         |
|                      | Cyto-515 × Cyto-225                                                               | 80        | 10        |
|                      | -1681 × C4                                                                        | 80        | 10        |
|                      | Cyto-313 × C4                                                                     | 90        | 11        |
|                      | Cyto-515 × C4                                                                     | 80        | 7         |
|                      | SL.4 × C4                                                                         | 120       | 16        |
|                      | Cyto-161 × Cyto-313                                                               | 90        | 10        |
|                      | Cyto-124 x Cyto-313                                                               | 70        | 20        |
| 77 C                 | Cyto-124 x Cyto-313                                                               | 70        | 20        |
|                      | Total                                                                             | 4187      | 597       |

A total of 4187 pollinations were attempted in 77 combinations. The boll setting was obtained in all combinations whereas in few combinations crossed bolls were

retained but seeds were not formed in them and it could be either due to incompatibility among different species or sterility barriers existing at pre and post fertilization stages of hybridization. The hormones viz., Gibberellic acid (GA) and Nephthalene acetic acid (NAA) were exogenously applied at the rates of 50 and 100 mg L<sup>-1</sup> water, respectively after 24 hours of pollination. The application continued till 72 hours to retain the crossed bolls.













Fig.2. Conversion of drought resistant interspecific hybrids into high yielding with desirable fibre traits through back crossing





Fig.3. Conversion of CLCuV resistant interspecific hybrids into high yielding with desirable fibre traits through back crossing

#### 3.3 Chromosomal Studies

**A.** Some early and CLCuV resistant plants were observed in interspecific hybrid i.e {*G.hirsutum* x 2(*G.arboreum* x *G.anomalum*)} x .<sup>4</sup>*G.hirsutum*. Buds were fixed in Carnoy's solution and preserved in 70% alcohol. The chromosomal studies were carried out at Metaphase-1. The results are given below.

**Chromosomal configurations** 

| PMC No. | l's | II's | III's | IV's | Total | Remarks           |
|---------|-----|------|-------|------|-------|-------------------|
| 3       | -   | 26   | -     | -    | 52    | Plant was fertile |
| 4       | -   | 26   | -     | -    | 52    |                   |
| Ave.    | -   | 26   | -     | -    | 52    |                   |

The chromosomal configuration for the above combination at Metaphase-1 is depicted in Fig. 4.

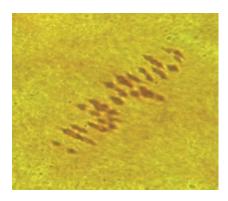



Fig-4. 126 II's = 52

Fig 4. Chromosomal configurations of {G.hirsutum x 2(G.arboreum x G.anomalum)} x . 4G.hirsutum at Metaphase-1

## Morphology

- 1) Plant shape = Erect.
- 2) Petal colour = i). Light pink with yellow pollen.
- 3) li).Creamy petals with purple spot
- 4) Boll size = good.
- 5) Boll opening = Very good with extra white staple.

#### Economic and fibre characteristic's

| Plant yield | GOT (%)   | Fibre length | Mic.      | Strength  |
|-------------|-----------|--------------|-----------|-----------|
| (g)         |           | (mm)         | (ug/inch) | g/tex     |
| 56.3-215.5  | 34.3-45.1 | 25.9-33.1    | 3.3-5.2   | 27.0-33.6 |

**B.** Buds of *G.arboreum* treated with 0.02% colchicine for 24 hours were checked but the plant was still diploid (Fig-5). Buds were fixed in Carnoy's solution, preserved in 70% ethanol and studied at metaphase-1.

Chromosomal configurations of G.arboreum

| PMC No. | l's | II's | III's | IV's | Total | Remarks                  |
|---------|-----|------|-------|------|-------|--------------------------|
| 1       | -   | 13   | -     | -    | 26    | Plant was fertile but no |
| 2       | -   | 13   | -     | -    | 26    | effect of cholchicine    |
| Ave.    |     |      |       |      |       | treatment                |



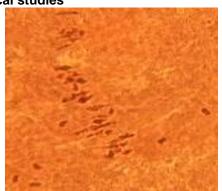
Fig 5. (G.arboreum treated with cholchicine)

## 3.4. Performance of Filial Generations 2017-18

Single plants with CLCuV Tolerence, good yield and fibre quality traits were selected from the breeding material during 2017-18. The detail of each filial generation is as follows:

Table 3.5 Detail of single plants selected from breeding material

| Filial<br>Generation | No of Plant<br>Selected | YieldPlant <sup>-1</sup><br>(g) | (%) (mm)  |           | Uni. Index | Mic     | Fibre<br>Strength |  |  |
|----------------------|-------------------------|---------------------------------|-----------|-----------|------------|---------|-------------------|--|--|
| Generation           | Selected                |                                 | Range     |           |            |         |                   |  |  |
| F <sub>1</sub>       | 184                     | 106.4-209.5                     | 39.2-40.3 | 28.7-29.7 | 82.1-84.5  | 4.2-4.9 | 27.8-28.6         |  |  |
| F <sub>2</sub>       | 425                     | 64.8-240.1                      | 37.0-44.6 | 28.0-32.5 | 78.9-82.9  | 4.0-4.8 | 27.3-31.9         |  |  |
| F <sub>3</sub>       | 939                     | 75.3-220.9                      | 36.9-40.7 | 28.3-31.3 | 82.1-84.8  | 3.5-4.2 | 29.6-31.4         |  |  |
| $F_4$                | 424                     | 44.6-2038                       | 38.8-42.3 | 27.7-31.5 | 82.5-85.2  | 4.1-4.7 | 25.8-30.3         |  |  |
| F <sub>5</sub>       | 534                     | 50.9-224.2                      | 38.0-42.4 | 28.5-32.5 | 83.0-85.3  | 4.1-4.9 | 29.9-32.4         |  |  |
| F <sub>6</sub>       | 126                     | 75.4-164.8                      | 39.7-40.8 | 30.0-30.8 | 84.2-85.5  | 3.9-4.7 | 28.5-30.7         |  |  |


# 3.5 Search for an euploids/ haploids

In the nature, there is spontaneous occurrence of aneuploids and haploids in *G. hirsutum*. Therefore, efforts continued for search for monosomes to identify individual chromosomes and haploids to make homozygous lines in cotton.

Thirteen obviously abnormal plants were observed in field no 4/18, 4/19 in interspecific Cyto breeding material. Only one plant was hexaploid. Two plants were normal diploids and remaining ten plants were tetraploid. Three normal tetraploid plants were transplanted in permanent block for crossing purpose. The studies on morphology and cytology of these abnormal plants during the season were carried out.

Cytological studies





A.Chromosomal Configuration of tetraploid plant

B. Chromosomal Configuration of hexaploid plant

Chromosomal configurations of abnormal plants

|          | om om occurrence or anomormum premier |      |       |      |       |                        |  |  |  |  |  |  |
|----------|---------------------------------------|------|-------|------|-------|------------------------|--|--|--|--|--|--|
| Plant No | ľs                                    | ll's | III's | IV's | Total | Remarks                |  |  |  |  |  |  |
|          |                                       |      |       |      |       | All plants were normal |  |  |  |  |  |  |
| Α        | 0                                     | 26   | 0     | 0    | 52    | tetraploids            |  |  |  |  |  |  |

| Plant No. | ľs | II's | III's | IV's | Total | Remarks             |
|-----------|----|------|-------|------|-------|---------------------|
| В         | 10 | 24   | 1     | 1    | 65    | Plant was hexaploid |

#### 3.6 Progeny Row Trial

#### 3.6.1 Trial-1

# Objective: Testing of promising progenies for long staple

Fourteen single plants possessing good fibre traits selected from  $F_5$  and  $F_6$  generation 2016 were planted in non-replicated progeny row trial along with one standard Cyto-179 during crop season 2017-18. The detail is given in Table 3.6. Data showed that maximum seed cotton yield was produced by progeny-3 (3073 kg ha<sup>-1</sup>) followed by progeny (2891 kg ha<sup>-1</sup>) compared with standard Cyto-179 (2872 kg ha<sup>-1</sup>). Maximum lint % was produced by progeny-3 (39.3%) followed by progeny-5 (39.2%) compared with Cyto-179 (38.8%).

The progeny-1 produced longest fibre (32.8 mm) followed by progeny-2 (32.5 mm) and compared with 28.2 mm of Cyto-179. All the progenies have desirable micronaire values ranging from 4.0 to 4.8 µg inch<sup>-1</sup>. The maximum fibre strength (38.8 g/tex) produced by progeny-2 followed by progeny-1 (35.4 g/tex) and 27.0 g/tex compared with standard Cyto-179.

Table 3.6 Performance of long staple progenies at CCRI, Multan during 2017-18.

| Progeny        | Yield                  | GOT  | Staple | Micronaire               | Uniformity | Fibre strength         |
|----------------|------------------------|------|--------|--------------------------|------------|------------------------|
|                | (kg ha <sup>-1</sup> ) | %    | length | (µg inch <sup>-1</sup> ) | index      | (g tex <sup>-1</sup> ) |
|                |                        |      | (mm)   |                          | %          |                        |
| 1              | 1930                   | 36.9 | 32.8   | 4.0                      | 86.0       | 35.4                   |
| 2              | 2063                   | 35.8 | 32.5   | 4.6                      | 86.2       | 38.8                   |
| 3              | 3073                   | 39.3 | 30.9   | 4.1                      | 84.9       | 33.1                   |
| 4              | 2371                   | 34.9 | 31.4   | 4.4                      | 85.0       | 32.4                   |
| 5              | 2508                   | 39.2 | 31.0   | 4.5                      | 85.0       | 32.6                   |
| 6              | 2719                   | 35.3 | 31.3   | 4.5                      | 84.4       | 32.4                   |
| 7              | 2891                   | 34.3 | 30.3   | 4.3                      | 81.8       | 31.8                   |
| 8              | 2300                   | 35.9 | 31.1   | 4.4                      | 82.8       | 31.5                   |
| 9              | 2161                   | 37.2 | 30.4   | 4.8                      | 83.5       | 30.6                   |
| 10             | 2763                   | 37.8 | 29.9   | 4.1                      | 83.3       | 32.0                   |
| 11             | 1484                   | 33.4 | 30.0   | 4.5                      | 83.7       | 32.1                   |
| 12             | 2156                   | 35.3 | 30.0   | 4.4                      | 83.0       | 31.9                   |
| 13             | 2723                   | 35.1 | 31.5   | 4.2                      | 85.2       | 33.4                   |
| 14             | 2250                   | 37.7 | 30.2   | 4.2                      | 82.3       | 31.8                   |
| Cyto-179 (Std) | 2872                   | 38.8 | 28.2   | 4.9                      | 82.7       | 27.0                   |

#### 3.6.2 Trial-2

#### Objective: Testing of promising progenies for long staple length.

Fourteen single plants possessing good fibre traits selected from  $F_5$  and  $F_6$  generation 2016 were planted in non-replicated progeny row trial alongwith one standard Cyto-179 during crop season 2017-18. The detail is given in Table 3.7.

Data showed that maximum seed cotton yield was produced by progeny-21 (3560 kg ha<sup>-1</sup>) followed by progeny-16 (2980 kg ha<sup>-1</sup>) compared with standard Cyto-179 (2960 kg ha<sup>-1</sup>). Maximum G.O.T% produced by progeny-29 (43.1%) followed by progeny-25 (42.2%) compared with Cyto-179 (39.5%).

The progeny-25 produced longest fibre (31.1 mm) followed by progeny-16 (30.9 mm) and compared with 28.1mm of Cyto-179. All the progenies have desirable micronaire values ranging from 3.6 to 4.5  $\mu$ g inch<sup>-1</sup>. The maximum fibre strength (32.9.8 g/tex) produced by progeny-22 compare with 27.0 g/tex of standard Cyto-179.

Table 3.7 Performance of long staple progenies at CCRI, Multan during 2017-18.

| Progeny        | Yield               | GOT  | Staple | Micronaire               | Uniformity | Fibre strength |
|----------------|---------------------|------|--------|--------------------------|------------|----------------|
|                | kg ha <sup>-1</sup> | %    | length | (µg inch <sup>-1</sup> ) | index %    | (g/tex)        |
|                |                     |      | (mm)   |                          |            |                |
| 16             | 2980                | 36.4 | 30.9   | 4.5                      | 83.4       | 29.8           |
| 17             | 2140                | 37.7 | 28.8   | 4.3                      | 81.0       | 29.6           |
| 18             | 2780                | 40.4 | 29.2   | 4.3                      | 81.7       | 29.2           |
| 19             | 2240                | 39.9 | 30.3   | 4.1                      | 82.9       | 32.2           |
| 20             | 2145                | 40.9 | 30.4   | 4.1                      | 85.1       | 31.4           |
| 21             | 3560                | 38.6 | 28.8   | 3.8                      | 83.5       | 31.6           |
| 22             | 2960                | 38.8 | 30.9   | 3.9                      | 83.2       | 32.9           |
| 23             | 2590                | 40.6 | 30.3   | 3.6                      | 83.0       | 32.8           |
| 24             | 2040                | 42.0 | 29.3   | 4.4                      | 82.0       | 30.6           |
| 25             | 2190                | 42.2 | 31.1   | 4.2                      | 83.1       | 32.7           |
| 26             | 2090                | 39.7 | 30.2   | 4.3                      | 82.5       | 31.4           |
| 27             | 2090                | 39.9 | 29.1   | 4.2                      | 83.1       | 30.9           |
| 28             | 2040                | 40.4 | 29.9   | 3.9                      | 81.0       | 30.4           |
| 29             | 2623                | 43.1 | 28.4   | 4.4                      | 83.5       | 30.9           |
| Cyto-179 (Std) | 2960                | 39.5 | 28.1   | 4.4                      | 82.7       | 27.2           |

## 3.7 Performance of New Cyto-strains

Micro Varietal Trial-1

Objective: Testing and evaluation of promising medium long staple CLCuD tolerant Bt. strains for the development of commercial varieties.

Six *Bt.* strains having tolerance against cotton leaf curl virus (CLCuD) viz., Cyto-520, Cyto-521, Cyto-522, Cyto-523, Cyto-524 and Cyto-525 were tested in replicated micro-varietal trial on plot size 15' x10' along with FH-142 and Cyto-179 as standard varieties. The performance of this material is given in Table 3.8.

Table 3.8. Performance of Cyto-strains in Micro Varietal Trial -1 during 2017-18

| Strain         | Yield<br>(kg ha <sup>-1</sup> ) | Plant<br>Population<br>(ha <sup>-1</sup> ) | Boll<br>weight<br>(g) | Lint<br>(%) | Fiber<br>Length<br>(mm) | Micronaire<br>(μg inch <sup>-1</sup> ) | Strength<br>g/tex |
|----------------|---------------------------------|--------------------------------------------|-----------------------|-------------|-------------------------|----------------------------------------|-------------------|
| Cyto-520       | 4304                            | 46624                                      | 2.93                  | 38.0        | 29.5                    | 4.2                                    | 29.5              |
| Cyto-521       | 3443                            | 42320                                      | 3.57                  | 38.7        | 28.9                    | 4.3                                    | 27.6              |
| Cyto-522       | 1291                            | 37299                                      | 2.64                  | 42.0        | 27.5                    | 4.6                                    | 28.4              |
| Cyto-523       | 2869                            | 38016                                      | 2.61                  | 39.2        | 28.7                    | 4.5                                    | 28.5              |
| Cyto-524       | 3587                            | 37299                                      | 3.09                  | 38.9        | 28.6                    | 3.8                                    | 28.6              |
| Cyto-525       | 2870                            | 42320                                      | 2.61                  | 40.8        | 29.5                    | 4.7                                    | 30.7              |
| FH-142 (Std)   | 2726                            | 38016                                      | 3.48                  | 39.3        | 26.9                    | 4.9                                    | 26.2              |
| Cyto-179 (Std) | 3443                            | 38016                                      | 3.42                  | 39.7        | 28.0                    | 4.8                                    | 25.7              |

C.D. (5%) for seed cotton Yield = 197.10

CV% = 3.74

Table 3.8 showed that maximum seed cotton yield was produced by Cyto-520 (4304 kg ha<sup>-1</sup>) followed by Cyto-524 (3587 kg ha<sup>-1</sup>) and Cyto-521 (3443 kg ha<sup>-1</sup>) compared with standards FH-142 (2726 kg ha<sup>-1</sup>) and Cyto-179 (3443 kg ha<sup>-1</sup>). Maximum lint % produced by Cyto-522 (42.0%) followed by Cyto-525 (40.8%) compared with standards FH-142 (39.3%) and Cyto-179 (39.7%).

The strain Cyto-520 and Cyto-525 produced the medium long staple of 29.5 mm followed by Cyto-521(28.9 mm) and Cyto-523 (28.7mm) compared with 26.9 mm of FH-142 and 28.0 mm of Cyto-179. All the strains have desirable micronaire values ranging from 3.8 to 4.9µg inch<sup>-1</sup>. The maximum fibre strength (30.7g/tex) produced by Cyto-525 followed by Cyto-520 (29.5 g/tex) and Cyto-524(28.6 g/tex) compared with 26.2 and 26.7 g/tex of standards FH-142 and Cyto-179, respectively.

#### Micro Varietal Trial-2

# Objective: Testing and evaluation of promising medium long staple CLCuD tolerant Bt. strains for the development of commercial varieties.

Six cotton leaf curl virus tolerant *Bt.* strains viz., Cyto-526, Cyto-527, Cyto-528, Cyto-529, Cyto-530 and Cyto-531 were tested in replicated micro-varietal trial on plot size 15' ×10' alongwith FH-142 and Cyto-179 as standard varieties. The performance of this material is given in Table 3.13.

Data presented in Table 3.9 exhibited that maximum seed cotton yield was produced by Cyto-528 (3107 kg ha<sup>-1</sup>) followed by Cyto-527 (2868 kg ha<sup>-1</sup>) compared with standards FH-142 (2629 kg ha<sup>-1</sup>) and Cyto-179 (2828 kg ha<sup>-1</sup>). Maximum lint % produced by Cyto-528 (39.5%) followed by Cyto-527 (39.3%) compared with standards FH-142 (38.6%) and Cyto-179 (39.0%).

The strain Cyto-529 produced longest staple (30.7 mm) followed by Cyto-530 (30.2 mm) compared with FH-14 (27.4 mm) and Cyto-179 (28.2 mm). All the strains have desirable micronaire values ranging from 4.3 to 4.9  $\mu$ g inch<sup>-1</sup>. The maximum fibre strength (31.1 g/tex) produced by Cyto-526 followed by Cyto-530 (30.3 g/tex) and Cyto-527(30.2 g/tex) compared with 25.3 and 27.2 g/tex of standards FH-142 and Cyto-179.

Table 3.9. Performance of advanced strains in Micro Varietal Trial-2 during 2017-18

| Strain         | Yield<br>(kg ha <sup>-1</sup> ) | Plant<br>population<br>(ha <sup>-1</sup> ) | Boll wt.<br>(g) | Lint<br>(%) | Fiber<br>Length<br>(mm) | Micronaire<br>(µg inch <sup>-1</sup> ) | Strength<br>g tex <sup>-1</sup> |
|----------------|---------------------------------|--------------------------------------------|-----------------|-------------|-------------------------|----------------------------------------|---------------------------------|
| Cyto-526       | 2629                            | 45171                                      | 3.5             | 39.2        | 29.5                    | 4.7                                    | 31.1                            |
| Cyto-527       | 2868                            | 45888                                      | 3.2             | 39.3        | 28.5                    | 4.5                                    | 30.2                            |
| Cyto-528       | 3107                            | 42737                                      | 3.1             | 39.5        | 28.8                    | 4.3                                    | 29.2                            |
| Cyto-529       | 2629                            | 41322                                      | 3.0             | 37.2        | 30.7                    | 4.3                                    | 30.7                            |
| Cyto-530       | 2031                            | 40605                                      | 3.2             | 38.9        | 30.2                    | 4.6                                    | 30.3                            |
| Cyto-531       | 2270                            | 42171                                      | 3.3             | 36.8        | 28.8                    | 4.9                                    | 28.8                            |
| FH-142 (Std)   | 2629                            | 44171                                      | 3.4             | 38.6        | 27.4                    | 4.9                                    | 25.3                            |
| Cyto-179 (Std) | 2828                            | 43737                                      | 3.3             | 39.0        | 28.2                    | 4.7                                    | 27.2                            |

C.D. (5%) for seed cotton Yield = 108.52

CV% = 2.36

#### **Micro Varietal Trial-3**

# Objective: Testing and evaluation of medium long staple CLCuD tolerant Bt. strains for the development of commercial varieties.

Six new Bt strains having tolerance against cotton leaf curl virus CLCuD tolerant viz., Cyto-532, Cyto-533, Cyto-534, Cyto-535, Cyto-536 and Cyto-537 were tested in replicated microvarietal trial on plot size 15' ×10' along with FH-142 and Cyto-179 as standard varieties. The performance of this material is given in Table 3.15.

Data presented in Table-3.10 manifested that maximum seed cotton yield was produced by Cyto-537 (3270 kg ha<sup>-1</sup>) followed by Cyto-533 (3068 kg ha<sup>-1</sup>) compared with standards FH-142 (2852 kg ha<sup>-1</sup>) and Cyto-179 (2867 kg ha<sup>-1</sup>). Maximum boll weight (3.9 g) was produced by Cyto-536 followed by Cyto-535 (3.4 g) compared with 3.3 g and 3.2 g of FH-142 and Cyto-179

respectively. Maximum lint % produced by Cyto-537 (41.0%) followed by Cyto-533 (40.6%) and Cyto-532 (40.2%) compared with standards FH-142 (38.3%) and Cyto-179 (39.5%).

Table 3.10 Performance of Cyto-strains in Micro Varietal Trial -3 during 2017-18

| Strain         | Yield<br>(kg ha <sup>-1</sup> ) | Plant<br>Population<br>(ha <sup>-1</sup> ) | Boll<br>weight<br>(g) | Lint<br>(%) | Fiber<br>Length<br>(mm) | Micronaire<br>(μg/inch) | Strength<br>g tex |
|----------------|---------------------------------|--------------------------------------------|-----------------------|-------------|-------------------------|-------------------------|-------------------|
| Cyto-532       | 2435                            | 43554                                      | 2.9                   | 40.2        | 28.7                    | 4.5                     | 28.4              |
| Cyto-533       | 3068                            | 43080                                      | 2.8                   | 40.6        | 30.0                    | 4.7                     | 30.6              |
| Cyto-534       | 2540                            | 42670                                      | 3.3                   | 36.6        | 29.3                    | 4.6                     | 29.5              |
| Cyto-535       | 2490                            | 41625                                      | 3.4                   | 37.2        | 28.8                    | 4.6                     | 29.7              |
| Cyto-536       | 2352                            | 44989                                      | 3.9                   | 37.4        | 28.8                    | 4.5                     | 29.6              |
| Cyto-537       | 3270                            | 45106                                      | 2.9                   | 41.0        | 30.0                    | 4.8                     | 30.1              |
| FH-142 (Std)   | 2852                            | 45708                                      | 3.3                   | 38.3        | 27.9                    | 4.9                     | 27.3              |
| Cyto-179 (Std) | 2867                            | 46298                                      | 3.2                   | 39.5        | 28.1                    | 4.9                     | 27.0              |

C.D. (5%) for seed cotton Yield = 117.81

CV% = 2.46

The strains Cyto-533 and Cyto-537 produced the longest staple length of 30.0mm, followed by 29.3 mm of Cyto-534 compared with 27.9 mm of FH-142 and 28.1 mm of Cyto-179. All the strains have desirable micronaire values ranging from 4.5 to 4.9 µg inch<sup>-1</sup>. The maximum fibre strength (30.6 g/tex) produced by Cyto-533 followed by Cyto-537 (30.1 g/tex) and Cyto-535 (29.7 g/tex) compared with 27.3 and 27.0 g/tex of standards FH-142 and Cyto-179 respectively.

#### 3.8 Varietal Trial

#### 3.8.1 Varietal Trial-1

# Objective: Testing and evaluation of promising medium long staple CLCuD tolerant Bt. strains for the development of commercial varieties

Five CLCuD tolerant *Bt.* strains viz., Cyto-515, Cyto-516, Cyto-517, Cyto-518 and Cyto-519 were tested in replicated varietal trial on plot size 35' x10' alongwith FH-142 and Cyto-179 as standard varieties. The performance of this material is given in Table 3.16.

Data presented in Table 3.11 exhibited that maximum seed cotton yield was produced by Cyto-515 (3907.8 kg ha<sup>-1</sup>) followed by Cyto-518 (3360.9 kg ha<sup>-1</sup>) and Cyto-516 (3074 kg ha<sup>-1</sup>) compared with standards FH-142 (2500 kg ha<sup>-1</sup>) and Cyto-179 (2869 kg ha<sup>-1</sup>). Maximum lint % produced by Cyto-515 (39.1%) and Cyto-518 (39.1%) compared with standards FH-142 (38.7%) and Cyto-179 (38.8%).

Table 3.11 Performance of Cyto-strains in VT-1during 2017-18

| Strain         | Yield<br>(kg ha <sup>-1</sup> ) | Plant<br>population<br>(ha <sup>-1</sup> ) | Boll<br>wt.<br>(g) | Lint<br>(%) | Fiber<br>Length<br>(mm) | Micronaire<br>(µg inch <sup>-1</sup> ) | Strength<br>g tex <sup>-1</sup> |
|----------------|---------------------------------|--------------------------------------------|--------------------|-------------|-------------------------|----------------------------------------|---------------------------------|
| Cyto-515       | 3908                            | 43959                                      | 3.6                | 39.1        | 28.0                    | 4.9                                    | 26.2                            |
| Cyto-516       | 3074                            | 43037                                      | 4.3                | 39.9        | 28.1                    | 4.7                                    | 27.0                            |
| Cyto-517       | 3002                            | 43652                                      | 3.7                | 38.1        | 27.9                    | 4.8                                    | 26.1                            |
| Cyto-518       | 3361                            | 44574                                      | 4.1                | 39.1        | 28.3                    | 4.7                                    | 27.6                            |
| Cyto-519       | 2254                            | 44574                                      | 3.2                | 38.3        | 29.5                    | 4.1                                    | 29.5                            |
| FH-142         | 2500                            | 44574                                      | 3.4                | 38.7        | 27.2                    | 4.9                                    | 26.2                            |
| Cyto-179 (Std) | 2869                            | 41807                                      | 3.8                | 38.8        | 27.8                    | 4.7                                    | 25.8                            |

C.D. (5%) for seed cotton Yield = 287.91 CV% = 5.40

The strain Cyto-519 produced the medium long staple of 29.5mm followed by 28.3 mm of Cyto-518 compared with standards FH-142 (27.2 mm) and Cyto-179 (27.8 mm). All the strains have desirable micronaire values ranging from 4.1 to 4.9µg inch<sup>-1</sup>. The maximum fibre strength (29.5 g/tex) produced by Cyto-519 followed by Cyto-518 (27.6 g/tex) compared with 26.2 and 25.8 g/tex of standards FH-142 and Cyto-179, respectively.

#### 3.8.2 Varietal Trial-2

# Objective: Testing and evaluation of promising medium long staple CLCuD tolerant strains for the development of commercial varieties

Four CLCuD tolerant non-*Bt* strains viz.,Cyto-120, Cyto-122, Cyto-161and Cyto-164 were in replicated varietal trial on plot size 35' ×10' alongwith Cyto-124 and CIM-608 as standard varieties. The performance of this material is given in Table 3.12.

Data showed that maximum seed cotton yield was produced by Cyto-122 (3916 kg ha<sup>-1</sup>) followed by Cyto-161 (3343 kg ha<sup>-1</sup>) and Cyto-164 (3247 kg ha<sup>-1</sup>) compared with standards Cyto-124 (3152 kg ha<sup>-1</sup>) and CIM-608 (2820 kg ha<sup>-1</sup>). Maximum lint % was produced by Cyto-164 (37.8%) followed by Cyto-161 (37.6%) compared with standards Cyto-124 (37.1%) and CIM-608 (36.4%).

Table 3.12. Performance of Cyto-strains in VT-2 during 2017-18

| Strain          | Yield<br>(kg ha <sup>-1</sup> ) | Plant<br>population(<br>ha <sup>-1</sup> ) | Boll<br>wt.<br>(g) | Lint<br>(%) | Fiber<br>Length<br>(mm) | Micronaire<br>(µg inch <sup>-1</sup> ) | Strength<br>g tex <sup>-1</sup> |
|-----------------|---------------------------------|--------------------------------------------|--------------------|-------------|-------------------------|----------------------------------------|---------------------------------|
| Cyto-120        | 2865                            | 40075                                      | 3.1                | 36.1        | 29.3                    | 4.5                                    | 30.8                            |
| Cyto-122        | 3915                            | 40563                                      | 3.1                | 35.6        | 28.5                    | 4.1                                    | 29.2                            |
| Cyto-161        | 3342                            | 41328                                      | 2.9                | 37.6        | 26.4                    | 4.6                                    | 29.1                            |
| Cyto-164        | 3246                            | 40189                                      | 2.7                | 37.8        | 29.1                    | 4.2                                    | 29.2                            |
| Cyto-124 (Std.) | 3151                            | 40084                                      | 2.9                | 37.1        | 28.5                    | 4.4                                    | 28.8                            |
| CIM-608 (Std.)  | 2820                            | 40989                                      | 2.9                | 36.4        | 29.0                    | 4.3                                    | 30.9                            |

C.D. (5%) for seed cotton = 258.78 CV% = 4.44

The strain Cyto-120 produced longest staple of 29.3 mm followed by Cyto-122 (28.5 mm) compared with Cyto-124 (28.5 mm) and CIM-608 (29.0mm). All the strains have desirable micronaire values ranging from 4.1 to 4.6  $\mu g$  inch<sup>-1</sup>. All the strains have desirable micronaire values ranging from 4.1 to 4.6  $\mu g$  inch<sup>-1</sup>. The maximum fibre strength (30.8 g/tex) produced by Cyto-120 followed by Cyto-122 and Cyto-164 (29.2 g/tex) compared with 28.8 g/tex of standards Cyto-124 and 30.9 g/tex of CIM-608.

#### Production of Pre Basic seed produced during 2017-18.

Pre-basic seed of six approved and upcoming g cotton varieties of cyto section viz., CIM-608, Cyto-124, Cyto-177, Cyto-178, Cyto-179 and Cyto-313 was produced. The detail is given in Table 3.13.

Table 3.13. detail of pre basic seed produced during 2017-18.

| Variety  | Pre-basic seed produced (kg) |
|----------|------------------------------|
| CIM-608  | 63                           |
| Cyto-124 | 60                           |
| Cyto-177 | 80                           |
| Cyto-178 | 66                           |
| Cyto-179 | 34                           |
| Cyto-313 | 90                           |

\_\_\_\_\_

## 4. ENTOMOLOGY

The research carried out on various aspects under field and lab conditions was focused on 1) sowing date impact on the development of pink bollworm, 2) surveys of cotton growing areas for pink bollworm infestation, 3) assessing impact of first spray on rest of the pest management, 4) monitoring of lepidopterous pests with sex pheromone and light traps, 5) host plant tolerance of CCRI, Multan strains, 6) National Coordinated Varietal Trials on *Bt.* & non-*Bt.* strains, 7) monitoring of insecticide resistance in cotton pests. Efforts were continued to develop mass rearing techniques for pink bollworm along with rearing and maintaining natural enemies of cotton pests for the use in the lab and for release in the field. Section also provided internship facilities` to students of different Universities. The section participated in training programmes, organized by the Institute for the farmers and staff of Agriculture Extension and Pest Warning & Quality Control (PW&QC) Department and pesticide companies. Scientists also recorded IPM related programmes in electronic media.

#### 4.1 Studies on Pink Bollworm

#### 4.1.1 Impact of sowing time on PBW infestation

The trial was conducted to assess the level of pink bollworm infestation at different sowing dates. The Set-1 (Early-March) was planted on 6<sup>th</sup> March, Set-II (Mid-March) on 17<sup>th</sup> March, Set-III (Early-April) on 1<sup>st</sup> April, Set-IV (Mid-April) on 15<sup>th</sup> April and Set-V (Early-May) on 2<sup>nd</sup> May. Five sowing dates were planned to be evaluated, but unfortunately Mid-April planted cotton was adversely affected by unusual weather condition and completely destroyed at seedling stage. Three Bt varieties (CIM-616, CIM-598 & Cyto-178) and two non Bt varieties (Cyto-124 & CIM-620) were sown in RCBD with three replicates.

Prevalence of PBW infestation and live larvae in Set-I and Set-II was detected in August and in Set-III and Set-V during September. Generally, infestation and live larval percentage was higher in October and lower in August. Moreover, Set-I was severely infested with PBW during August, September and October as compared to other sets (Fig. 4.1).

Table-4.1 Seasonal average of pink bollworm damage and live larvae in Bt and non Bt cotton varieties at different sowing dates

| Varieties        | % Boll damage |           |            |          | % Live Larvae |          |           |         |          |     |
|------------------|---------------|-----------|------------|----------|---------------|----------|-----------|---------|----------|-----|
|                  | Set<br>I      | Set<br>II | Set<br>III | Set<br>V | Avr           | Set<br>I | Set<br>II | Set III | Set<br>V | Avr |
| CIM-616          | 13.3          | 13.3      | 3.3        | 0.0      | 7.5           | 11.7     | 10.0      | 5.0     | 0        | 6.7 |
| CIM-598          | 3.3           | 6.7       | 6.7        | 0.0      | 4.2           | 3.3      | 2.5       | 4.0     | 0        | 2.5 |
| Cyto-178         | 16.7          | 3.3       | 3.3        | 3.3      | 6.7           | 16.7     | 6.7       | 3.3     | 5.0      | 7.9 |
| Cyto-124(Non Bt) | 25.0          | 3.3       | 3.3        | 5.0      | 9.2           | 10.0     | 5.0       | 3.3     | 7.5      | 6.5 |
| CIM-620 (Non Bt) | 10.0          | 6.7       | 1.7        | 3.3      | 5.4           | 6.7      | 6.7       | 2.5     | 2.5      | 4.6 |
| Average          | 13.7          | 6.7       | 3.3        | 2.7      |               | 9.7      | 6.2       | 3.6     | 3.0      |     |

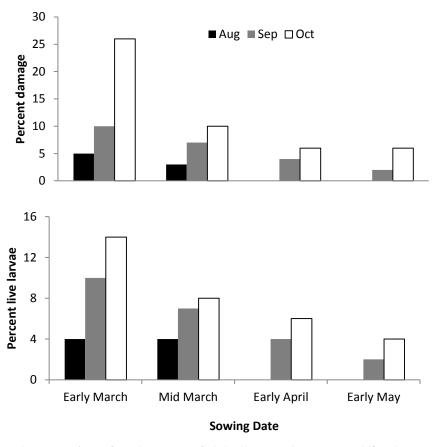



Fig. 4.1 Impact of sowing dates on pink bollworm damage and live larvae

Maximum pink bollworm damage percentage in Set-I, Set-II, Set-III and Set-V was recorded in Cyto-124, CIM-616, CIM-598 and Cyto-124 respectively. However, percentage of live larvae in Set-I was higher in Cyto-178, in Set II & Set-III it was higher in CIM-616 and in Set-V maximum percentage was observed in Cyto-124. On the whole, infestation and live larval percentage was lower in CIM-598 as compared to other tested varieties (Table-4.1).

Overall, pink bollworm infestation and percentage of live larvae were higher in early-March planting (Set-1)and lower in early-May planting (Set-V). So the farmers are advised to avoid planting cotton before 1<sup>st</sup> April.

## 4.1.2 Pink bollworm infestation in green bolls in major cotton growing area

Pink bollworm and whitefly remained the hot topic in the current year therefore surveys were conducted in major cotton growing districts (Lodhran, Khanewal, Multan, Bahawalpur and Vehari) for crop development and population dynamics of insect pests of cotton. Pink bollworm infestation recorded in the bolls collected from the surveyed area during October is presented here.

All the cotton growing areas were infested with pink bollworm and maximum boll infestation and live larvae were observed in district Lodhranfollowed by Khanewalas compared to other district (**Table-4.2**).

All the surveyed varieties/strains were found to be susceptible against pink bollworm and maximum pink bollworm damage percentage was recorded in IUB-2013 & MNH-886. Larval percentage was higher in MNH-886 as compared to other tested varieties (**Fig. 4.2**).

Table-4.2 Pink bollworm damage in bolls and live larvae recorded from major cotton growing districts

| Districts  | % Boll damage | % Larvae |
|------------|---------------|----------|
| Lodhran    | 37.1          | 28.1     |
| Khanewal   | 25.3          | 23.5     |
| Multan     | 21.0          | 11.0     |
| Bahawalpur | 19.4          | 18.5     |
| Vehari     | 23.1          | 22.5     |

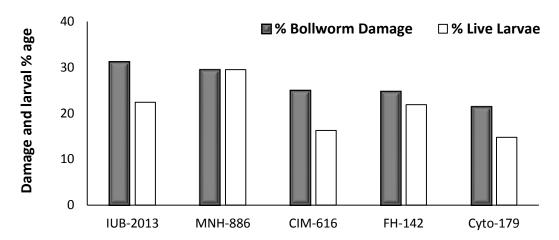



Fig. 4.2 Pink bollworm damage and live larvae recorded from major cotton growing districts

#### 4.2 Implications of insecticides induced hormesis of insects

Decision to initiate the spray application for sucking insect pest is very important because certain group of insecticide induced outbreak of secondary pest. For the purpose a trial was conducted to investigate the causes of insect pest resurgence and secondary pest outbreaks after pesticide applications.

Three groups of insecticides viz; neonicotinoide, thiourea, organophosphate, and insect growth regulators (IGR) were selected, these groups are normally used for first spray application.

The trial was planted in early May with plot size of (50' X 100') with three replications using RCBD. **Neonicotinoids group**, Imidacloprid 50 WP @ 100 ml/acre, Acetamiprid 40 WDG @ 60 ml/acre, Oshin 20 SG @ 100 gm/acer, Nitenpyrem 60 WDG @ 100 ml/acre; **Thiourea group**, Polo 500 SC @ 200 ml/acre; **Organophosphate group**, Acephate 75 SP @ 250 gm/ml, Dimethoate 40 EC @ 400 ml/acre & **Insect growth regulator group (IGR)**, Pyriproxyfen 10.8 EC @ 500 ml/acre & Buprofezin 25 SP @ 600 ml/acre was sprayed on 20<sup>th</sup> June when population of jassid reached at ETL and same insecticide was repeated on the same plots on 5<sup>th</sup> July. Percent mortality was calculated by using following formula.

$$Percent\ Mortality = 1 - \left[\frac{(\text{Pre\ population\ in\ control\ X\ Post\ population\ in\ treatment})}{(\text{Post\ population\ in\ control\ X\ Pre\ population\ in\ treatment})}\right]X\ 100$$

Mortality of jassid after 72hrs of 1<sup>st</sup> and 2<sup>nd</sup> spray in acephate treated plots was 62.55% and 72.15% respectively whereas in dimethoate it was 63.32% & and 73.70% respectively. Mortality of whitefly in acephate treated plots was -192.26% and -213.64% respectively, whereas in dimethoate it was -61.32% & and -97.22% respectively, 72hrs after the 1<sup>st</sup> and 2<sup>nd</sup> spray. Mortality of jassid in oshin treated plots was highest while lowest in imidacloprid treated plots. Mortality of whitefly in IGR's treated plots was higher as

compared to other tested insecticides. Mortality of thrips was higher in both the organophospates and imidacloprid after the 2<sup>nd</sup> spray.

Table 4.3 Efficacy of different groups of insecticides against sucking insect pest of cotton

|                      |            | Dose/     | % mortality 72-hrs after spray |                 |                 |                 |                 |                 |  |
|----------------------|------------|-----------|--------------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|--|
| Treatments           | Group      | acre      | Jassid                         |                 | Whitefly        |                 | Thrips          |                 |  |
|                      |            | (ml/acre) | 1 <sup>st</sup>                | 2 <sup>nd</sup> | 1 <sup>st</sup> | 2 <sup>nd</sup> | 1 <sup>st</sup> | 2 <sup>nd</sup> |  |
| Imidacloprid 50 WP   |            | 100       | 24.22                          | 40.82           | 22.22           | 31.25           | 52.24           | 62.47           |  |
| Acetamiprid 40 WDG   | Neonic     | 60        | 25.55                          | 28.36           | 39.96           | 44.74           | 54.46           | 61.31           |  |
| Oshin 20SG           | eo<br>Einc | 100       | 52.85                          | 63.83           | 38.72           | 43.18           | 53.33           | 60.16           |  |
| Nitenpyrem 60WDG     | 2 0        | 100       | 36.85                          | 42.93           | 20.99           | 30.95           | 37.41           | 45.39           |  |
| Acephate 75SP        | Organo     | 250       | 62.55                          | 72.15           | -192.26         | -213.64         | 65.95           | 71.69           |  |
| Dimethoate 40EC      | phosphate  | 400       | 63.32                          | 73.70           | -61.32          | -97.22          | 56.67           | 61.36           |  |
| Polo 500SC           | Thiourea   | 200       | 21.41                          | 34.24           | 48.15           | 59.38           | 41.67           | 45.73           |  |
| Pyriproxyfen 10.8 EC | IGR        | 500       | 33.69                          | 48.21           | 71.19           | 75.00           | 35.00           | 44.51           |  |
| Buprofezin 25 SP     | IGK        | 600       | 29.27                          | 37.33           | 42.96           | 52.50           | 31.39           | 35.26           |  |

Apparently, the early spray with organophosphates enhanced the population of whitefly therefore; use of OP's should be avoided at early season of the crop (Table 4.3).

## 4.3 Monitoring of lepidopterous pests with sex pheromone traps

Male moth activity of *Pectinophoragossypiella*, *Earias insulana*, *Earias vittella*, *Helicoverpaarmigera*, *Spodoptera litura* and *Spodoptera exigua* was monitored with sex pheromone baited traps throughout the year at CCRI, Multan and farmer's field at Chak 116/10R (Khanewal). Overall the declining population trend was noted in *S. litura* and *H. armigera* at both locations and *P.gossypiella* at CCRI, Multan. While increasing trend was recorded in *P.gossypiella* and *S. exigua* at farmer's field and in *Earias* species at both locations ascompared to last year. Comparatively, male moth catches of all the species were higher at farmer's field than at CCRI, Multan (Table-4.4). Weekly male moth catch activities are given in Fig. 4.3 (a-f).

## 4.3.1 Pectinophora gossypiella (Pink bollworm)

Male moth's activity remained zero from January to 1<sup>st</sup> week of March and during last fortnight of December as compared to last year 2016. Moth's population showed fluctuating trend throughout the season, with its peak intensity in 3<sup>rd</sup> week of April at CCRI, Multan and 3<sup>rd</sup> week of September at farmer's field. Comparatively, the moth catches were 84.6% higher at farmer's field than at Multan (Fig. 4.3a). Overall male moth catches were 144.4% lower at Multan and 47.3% higher at farmer's field to that of last year (Table-4.4).

#### 4.3.2 Earias vittella (Spotted bollworm)

Male moth catches remained zero upto 2<sup>nd</sup> week of March at CCRI, Multan and 2<sup>nd</sup> week of April at farmer's field. Moth activity was not consistent and reached at its peak in 3<sup>rd</sup> week of August at CCRI, Multan and 1<sup>st</sup> week of November at farmer's field. Moth catches at farmer's field were 41.6% higher than at Multan (**Fig. 4.3b**). Overall, male moth catches were 67.1% and 63.9% higher at Multan and farmer's field respectively as compared to last year (**Table-4.4**).

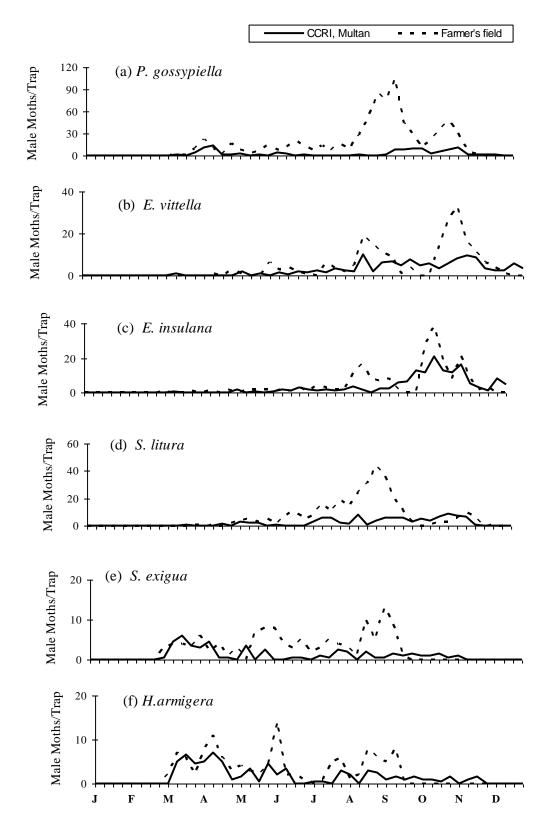



Fig.4.3 Weekly male moth catches of Lepidopterous pests in sex pheromone traps at CCRI, Multan and farmer's field (Khanewal).

## 4.3.3 Earias insulana (Spiny bollworm)

Male moth catches remained zero upto 2<sup>nd</sup> week of March at CCRI, Multan and 1<sup>st</sup> week of March at farmer's field. There was a fluctuating trend in moth activity and maximum catches were recorded in 4<sup>th</sup> week of October at both locations. Moth catches were 29.2% higher at farmer's field than at Multan (**Fig. 4.3c**). Overall male moth catches were 69.3% and 77.8% higher at Multan and farmer's field respectively as compared with last year (**Table-4.4**).

## 4.3.4 Spodoptera litura (Armyworm)

Male moth catches were zero upto 3<sup>rd</sup> and 4<sup>th</sup> week of March at CCRI, Multan, and farmer's field, respectively. Moth activity reached at peak in 1<sup>st</sup> week of November at CCRI, Multan and 1<sup>st</sup> week of September at farmer's field with fluctuated trend afterwards. Moth catches at farmer's field were comparatively 67.7% higher than at Multan (**Fig. 4.3d**). Overall male moth catches were 252.0% and 24.0% lower than that of last year at Multan and farmer's field respectively (**Table-4.4**).

#### 4.3.5 Spodoptera exigua (Beet armyworm)

The population of male moths was almost zero in January, February, November and December at both the locations. Moth activity started from 1<sup>st</sup> week of March with fluctuating trend afterwards. Catches were 60.3% higher at farmer's field than at Multan (Fig. 4.3e). Overall male moth catches were 40.5% higher at farmer's field as compared to last year (Table-4.4).

#### 4.3.6 Helicoverpa armigera (American bollworm)

Male moth activity remained zero upto 1<sup>st</sup> week of March at CCRI, Multan and last week of February farmer's field. Moth population increased afterwards with fluctuating trend and maximum catches were recorded in 2<sup>nd</sup> week of April and 1<sup>st</sup> week of June at CCRI, Multan and farmer's field, respectively. Afterwards population declined and moth activity finished upto last week of November at CCRI, Multan and mid-September at farmer's field. Moth catches were comparatively 39.1% higher at farmer's field than Multan (Fig. 4.3f). Overall, male moth catches were about 30.3% and 21.0% lower at Multan and farmer's field respectively as compared to last year (Table-4.4).

Table-4.4 Comparison of male moth catches of lepidopterous pests in sex pheromone traps

| Insect pest    | CCRI, Multan |       |               | Farmer' field |       |               |
|----------------|--------------|-------|---------------|---------------|-------|---------------|
|                | 2016         | 2017  | <u>+</u> %age | 2016          | 2017  | <u>+</u> %age |
| P. gossypiella | 290.1        | 118.7 | -144.4        | 406.5         | 772.0 | 47.3          |
| E. vittella    | 40.0         | 121.5 | 67.1          | 75.0          | 208.0 | 63.9          |
| E. insulana    | 45.0         | 146.6 | 69.3          | 46.0          | 207.0 | 77.8          |
| S. litura      | 352.0        | 100.0 | -252.0        | 384.5         | 310.0 | -24.0         |
| S. exigua      | 48.0         | 48.0  | 0.0           | 72.0          | 121.0 | 40.5          |
| H. armigera    | 94.5         | 72.5  | -30.3         | 144.0         | 119.0 | -21.0         |

#### 4.4 Monitoring of lepidopterous pests with light traps

Moth activity of *E. insulana*, *E. vittella*, *S. litura*, *S. exigua* and *H. armigera* was monitored throughout the year with inflorescent light traps at CCRI, Multan. Population trend of all the pests was almost same as monitored in sex pheromone baited traps at CCRI, Multan. Increasing population trend was observed in case of *Earias* spp. and *S. Exigua* while decreasing trend in case of *H. armigera* and *S. litura*(Table-4.5). Moth catches on weekly basis are given in Fig. 4.4 (a-e).

#### 4.4.1 Earias vittella (Spotted bollworm)

Moth catches of this species were zero upto 1st week of May and during June. Afterwards pest activity started at low level with its peak in 1<sup>st</sup> week of November (Fig. 4.4a). Total number of moths was 64.5% higher than that of last year (Table-4.5).

# 4.4.2 Earias insulana (Spiny bollworm)

Male moth catches remained zero from January to 1<sup>st</sup> week of March. Afterwards population increased with fluctuating trend and reached at peak in last week of October (Fig. 4.4b). Overall number of moth catches was 67.8% higher than last year (Table-4.5).

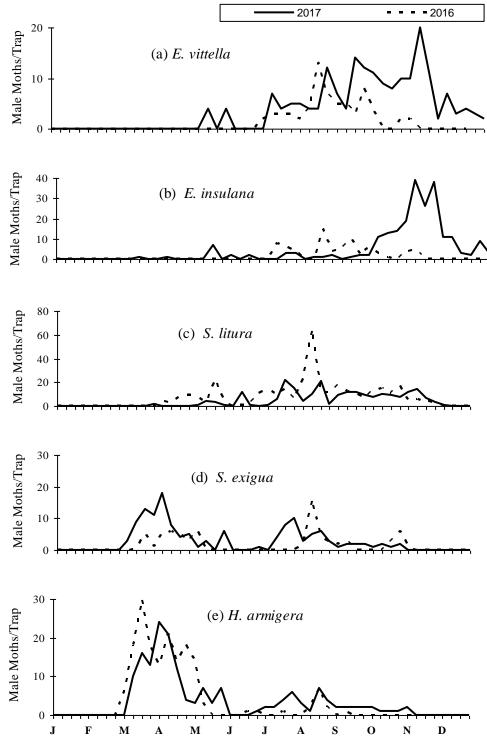



Fig. 4.4 Weekly moth catches of lepidopterous pests in light traps at CCRI, Multan

## 4.4.3 Spodoptera litura (Armyworm)

Moth catches of *S. litura* appeared in last week of March, after that their activity remained zero upto end-April. Moth activity again started in 1<sup>st</sup> week of May and reached to its maximum during 3<sup>rd</sup> week of July. Population declined afterwards with fluctuating trend upto 1<sup>st</sup> week of December (**Fig. 4.4c**). Overall moth catches were 61.2% lower than the last year (**Table-4.5**).

#### 4.4.4 Spodoptera exigua (Beet armyworm)

Moth catches remained zero during January-February and November-December. Moth's activity started in 1<sup>st</sup> week of March with inconsistent trend and reached to its maximum during 1<sup>st</sup> week of April (Fig. 4.4d). Overall moth catches were 46.5% higher than last year (Table-4.5).

## 4.4.5 *Helicoverpa armigera* (American bollworm)

Moth activity of *H.armigera* started in  $2^{nd}$  week of March with peak catches during  $1^{st}$  week of April. Later on population declined with fluctuating trend upto  $2^{nd}$  week of November (Fig. 4.4e). Overall moth catches were 3.0% lower as compared to last year (Table-4.5).

Table-4.5 Comparison of moth catches of lepidopterous pests in light traps based on total catches during the year/trap

| Insect pest          | 2016  | 2017  | % change ( <u>+</u> ) |
|----------------------|-------|-------|-----------------------|
| Earias vittella      | 66.0  | 186.0 | 64.5                  |
| Earias insulana      | 73.0  | 227.0 | 67.8                  |
| Spodoptera litura    | 353.0 | 219.0 | -61.2                 |
| Spodoptera exigua    | 71.7  | 134.0 | 46.5                  |
| Helicoverpa armigera | 170   | 165.0 | -3.0                  |

## 4.5 National Coordinated Varietal Trials (NCVT)

#### 4.5.1 Pest situation in set-A

In this set fifteen non-*Bt* strains were tested for their tolerance/susceptibility to insect pest complex. Jassid and whitefly remained dominant among sucking pests. Jassid population was below ETL on all the strains except on Cyto-225 & Thakkar-214 during August and its intensity was highest on NIAB-444 followed by Cyto-225 & Tipu-2 and lowest on GS-All-7 and NIA-887 in July. Whitefly population remained below ETL during growing season on all the testing strains except on CRIS-129 and NIAB-444. Its intensity was highest on NIAB-444 followed by CRIS-129 while lowest on TH-14 & NIA-887 in August. Thrips remained below ETL throughout the season on all the strains while its population was highest on Thakkar-214 followed by MPS-61 & Cyto-225 in August (Table-4.6). Bollworm infestation in immature fruiting parts was higher in PB-896 followed by CIM-610 & Thakkar-214 while no bollworm larvae were observed in all the strains (Tabl-4.7).

Table-4.6 Seasonal population of sucking insect pests on different non-Bt strains

|               | i i i i i i i i i i i i i i i i i i i | Number | of sucking in | sect pests pe | r leaf |      |
|---------------|---------------------------------------|--------|---------------|---------------|--------|------|
| Strains       | Ja                                    | ssid   | Whi           | tefly         | Thrips |      |
|               | July                                  | Aug    | July          | Aug           | July   | Aug  |
| TH-14         | 0.20                                  | 0.20   | 0.50          | 1.20          | 0.00   | 1.20 |
| GS-ALL-7      | 0.10                                  | 0.10   | 0.75          | 3.80          | 0.00   | 2.80 |
| NIA-887       | 0.10                                  | 0.40   | 0.65          | 1.20          | 0.00   | 4.40 |
| CRIS-613      | 0.20                                  | 0.30   | 0.90          | 2.50          | 0.00   | 1.50 |
| Cyto-225      | 0.75                                  | 1.90   | 1.20          | 1.90          | 0.00   | 5.40 |
| CIM-717       | 0.30                                  | 0.10   | 0.90          | 5.40          | 0.00   | 3.60 |
| TH-88/11      | 0.30                                  | 0.40   | 1.60          | 3.00          | 0.00   | 3.90 |
| Tipu-2        | 0.75                                  | 0.20   | 1.30          | 3.60          | 0.00   | 4.00 |
| Thakkar-214   | 0.15                                  | 1.40   | 1.10          | 3.20          | 0.00   | 7.60 |
| CIM-620 (Std) | 0.30                                  | 0.50   | 1.10          | 3.00          | 0.00   | 2.10 |
| NIAB-444      | 1.20                                  | 0.40   | 0.50          | 6.30          | 0.00   | 5.00 |
| MPS-61        | 0.20                                  | 0.10   | 1.00          | 2.20          | 0.00   | 6.60 |
| CIM-610       | 0.20                                  | 0.20   | 1.20          | 3.70          | 0.00   | 1.60 |
| PB-896        | 0.15                                  | 0.30   | 0.75          | 2.60          | 0.00   | 4.10 |

Table-4.7 Spotted/American bollworms damage and larval population on different non-*Bt* strains

| Strains       | Bollworm d | lamage % age | SBW larva | ae/ 25 plants |
|---------------|------------|--------------|-----------|---------------|
| Strains       | lmm        | Mat          | lmm       | Mat           |
| TH-14         | 0.00       | 0.00         | 0.00      | 0.00          |
| GS-ALL-7      | 0.00       | 0.00         | 0.00      | 0.00          |
| NIA-887       | 0.00       | 0.00         | 0.00      | 0.00          |
| CRIS-613      | 0.00       | 0.00         | 0.00      | 0.00          |
| Cyto-225      | 0.00       | 0.00         | 0.00      | 0.00          |
| CIM-717       | 0.00       | 0.00         | 0.00      | 0.00          |
| TH-88/11      | 0.00       | 0.00         | 0.00      | 0.00          |
| Tipu-2        | 0.00       | 0.00         | 0.00      | 0.00          |
| Thakkar-214   | 3.61       | 0.00         | 0.00      | 0.00          |
| CIM-620 (Std) | 1.35       | 0.00         | 0.00      | 0.00          |
| NIAB-444      | 0.00       | 0.00         | 0.00      | 0.00          |
| MPS-61        | 0.00       | 0.00         | 0.00      | 0.00          |
| CIM-610       | 4.17       | 0.00         | 0.00      | 0.00          |
| PB-896        | 5.56       | 0.00         | 0.00      | 0.00          |

Pink bollworm infestation was observed in susceptible bolls on GS-All-7, Cyto-225 & PB-896 while no bollworm larvae were observed on the all strains **(Table-4.8)**.

Table-4.8 Pink bollworm damage and larval population on different non-Bt strains

| Strains       | PBW damage %age | PBW larval %age |
|---------------|-----------------|-----------------|
| TH-14         | 0.00            | 0.00            |
| GS-ALL-7      | 3.33            | 0.00            |
| NIA-887       | 0.00            | 0.00            |
| CRIS-613      | 0.00            | 0.00            |
| Cyto-225      | 3.33            | 0.00            |
| CIM-717       | 0.00            | 0.00            |
| TH-88/11      | 0.00            | 0.00            |
| Tipu-2        | 0.00            | 0.00            |
| Thakkar-214   | 0.00            | 0.00            |
| CIM-620 (Std) | 0.00            | 0.00            |
| NIAB-444      | 0.00            | 0.00            |
| MPS-61        | 0.00            | 0.00            |
| CIM-610       | 0.00            | 0.00            |
| PB-896        | 3.33            | 0.00            |

#### 4.5.2 Pest situation in Set-B

In this set 22 Bt cotton and two standards (CIM-602 & FH-142) were tested for their tolerance/susceptibility to insect pest complex. Jassid population was above ETL on Cyto-313 & BH-201 in July while it remained below ETL in August on all the tested strains. Its maximum number was recorded on BH-201followed by Cyto-313 and minimum on B-2, CIM-632, SAU-1, NS-181 & CEMB-88(DG). Population of whitefly remained below ETL during July on all strains except CEMB Klean Cotton-1 (CEMB-3). Its intensity was highest on CEMB Klean Cotton-1 (CEMB-3) followed by Eagle-2 and lowest on CRIS-600 during July. While in August it remained above ETL on all strains except GH-Deebal, CEMB-55(DG), Bahar-07 & SAU-1 in addition its intensity was higher on Crystal-12 followed by BH-201 & NS-181 and lower on SAU-1 followed by GH-Deebal & Bahar-07. Thrips population was found below ETL during July and August on all the testing strains and its intensity was highest on CEMB-88(DG) and lowest on Bahar-07 (Table-4.9).

Spotted bollworm infestation in immature fruiting parts was higher on GH-Deebal followed by CEMB-55(DG) & AGC-Nazeer-1 and its live larvae were observed on FH-142, CEMB-55(DG), Sitara-15 & CEMB-88(DG) in immature fruiting parts. While no

bollworms damage/larva was found in mature fruiting parts of any strain (**Table-4.10**). Pink bollworm damage was found in CEMB Klean Cotton-1 (CEMB-3) & FH-152 while no pink bollworm larvae were observed in all strains (**Table-4.11**).

Table-4.9 Seasonal population of sucking insect pests *Bt* strains

| Strains             | Number of sucking insect pests per leaf |      |       |       |      |      |  |
|---------------------|-----------------------------------------|------|-------|-------|------|------|--|
|                     | Jas                                     | sid  | White |       | Thr  | ips  |  |
|                     | July                                    | Aug  | July  | Aug   | July | Aug  |  |
| CEMB Klean Cotton-1 |                                         |      |       |       |      |      |  |
| (CEMB-3)            | 0.30                                    | 0.40 | 4.60  | 5.30  | 2.30 | 1.40 |  |
| B-2                 | 0.20                                    | 0.10 | 0.70  | 4.60  | 0.20 | 3.50 |  |
| GH-Deebal           | 0.60                                    | 0.20 | 2.30  | 3.60  | 1.90 | 2.10 |  |
| FH-152              | 0.40                                    | 0.80 | 1.00  | 8.10  | 1.90 | 4.00 |  |
| Eagle-2             | 0.30                                    | 0.10 | 3.40  | 7.50  | 0.20 | 4.50 |  |
| Cyto-313            | 1.00                                    | 0.20 | 1.90  | 6.70  | 1.20 | 1.70 |  |
| Crystal-12          | 0.30                                    | 0.20 | 2.40  | 14.70 | 1.30 | 2.60 |  |
| CRIS-600            | 0.70                                    | 0.60 | 0.30  | 6.00  | 1.20 | 2.80 |  |
| FH-142 (Std-2)      | 0.80                                    | 0.50 | 1.30  | 8.20  | 5.40 | 3.80 |  |
| CIM-632             | 0.20                                    | 0.00 | 1.30  | 7.10  | 2.10 | 4.50 |  |
| CEMB-55(DG)         | 0.50                                    | 0.20 | 1.40  | 3.90  | 1.50 | 5.40 |  |
| BH-201              | 1.50                                    | 0.00 | 1.60  | 9.40  | 2.00 | 2.90 |  |
| Bakhtawar-1         | 0.50                                    | 0.10 | 0.60  | 5.80  | 0.20 | 3.00 |  |
| Bahar-07            | 0.70                                    | 0.20 | 1.10  | 3.60  | 0.40 | 2.00 |  |
| Sitara-15           | 0.70                                    | 0.20 | 2.30  | 4.50  | 2.30 | 0.60 |  |
| SAU-1               | 0.20                                    | 0.20 | 0.70  | 2.50  | 2.70 | 3.50 |  |
| CIM-602 (Std-1)     | 0.40                                    | 0.00 | 2.00  | 5.80  | 0.40 | 4.30 |  |
| NS-181              | 0.20                                    | 0.50 | 1.20  | 9.40  | 2.30 | 5.00 |  |
| D-19                | 0.40                                    | 0.10 | 2.50  | 7.90  | 0.0  | 4.20 |  |
| IUB-65              | 0.30                                    | 0.30 | 0.50  | 5.0   | 0.40 | 5.00 |  |
| GH-Mubarak          | 0.90                                    | 0.40 | 1.50  | 8.60  | 2.40 | 5.00 |  |
| CIM-625             | 0.50                                    | 0.10 | 1.10  | 5.10  | 0.10 | 3.00 |  |
| CEMB-88(DG)         | 0.20                                    | 0.10 | 0.40  | 7.30  | 4.50 | 8.70 |  |
| AGC-Nazeer-1        | 0.50                                    | 0.20 | 1.90  | 5.30  | 0.10 | 2.70 |  |

Table-4.10 Spotted bollworm damage and larval population on different Bt strains

| Strains             | Bollworm o | lamage % age | SBW larva | ae/ 25 plants |
|---------------------|------------|--------------|-----------|---------------|
| Strains             | lmm        | Mat          | lmm       | Mat           |
| CEMB Klean Cotton-1 |            |              |           |               |
| (CEMB-3)            | 1.49       | 0.00         | 0.00      | 0.00          |
| B-2                 | 7.27       | 0.00         | 0.00      | 0.00          |
| GH-Deebal           | 12.31      | 0.00         | 0.00      | 0.00          |
| FH-152              | 0.00       | 0.00         | 0.00      | 0.00          |
| Eagle-2             | 0.00       | 0.00         | 0.00      | 0.00          |
| Cyto-313            | 0.00       | 0.00         | 0.00      | 0.00          |
| Crystal-12          | 1.18       | 0.00         | 0.00      | 0.00          |
| CRIS-600            | 3.16       | 0.00         | 0.00      | 0.00          |
| FH-142 (Std-2)      | 7.27       | 0.00         | 0.23      | 0.00          |
| CIM-632             | 0.00       | 0.00         | 0.00      | 0.00          |
| CEMB-55(DG)         | 9.68       | 0.00         | 0.40      | 0.00          |
| BH-201              | 0.00       | 0.00         | 0.00      | 0.00          |
| Bakhtawar-1         | 0.00       | 0.00         | 0.00      | 0.00          |
| Bahar-07            | 0.00       | 0.00         | 0.00      | 0.00          |
| Sitara-15           | 2.99       | 0.00         | 0.37      | 0.00          |
| SAU-1               | 0.00       | 0.00         | 0.00      | 0.00          |
| CIM-602 (Std-1)     | 0.00       | 0.00         | 0.00      | 0.00          |
| NS-181              | 6.94       | 0.00         | 0.00      | 0.00          |
| D-19                | 0.00       | 0.00         | 0.00      | 0.00          |
| IUB-65              | 1.18       | 0.00         | 0.00      | 0.00          |
| GH-Mubarak          | 1.47       | 0.00         | 0.00      | 0.00          |
| CIM-625             | 0.00       | 0.00         | 0.00      | 0.00          |
| CEMB-88(DG)         | 0.93       | 0.00         | 0.23      | 0.00          |
| AGC-Nazeer-1        | 9.09       | 0.00         | 0.00      | 0.00          |

Table-4.11 Pink bollworm damage and larval population on different Bt strains

| Strains             | PBW damage %age | PBW larval %age |
|---------------------|-----------------|-----------------|
| CEMB Klean Cotton-1 |                 |                 |
| (CEMB-3)            | 3.33            | 0.00            |
| B-2                 | 0.00            | 0.00            |
| GH-Deebal           | 0.00            | 0.00            |
| FH-152              | 3.33            | 0.00            |
| Eagle-2             | 0.00            | 0.00            |
| Cyto-313            | 0.00            | 0.00            |
| Crystal-12          | 0.00            | 0.00            |
| CRIS-600            | 0.00            | 0.00            |
| FH-142 (Std-2)      | 0.00            | 0.00            |
| CIM-632             | 0.00            | 0.00            |
| CEMB-55(DG)         | 0.00            | 0.00            |
| BH-201              | 0.00            | 0.00            |
| Bakhtawar-1         | 0.00            | 0.00            |
| Bahar-07            | 0.00            | 0.00            |
| Sitara-15           | 0.00            | 0.00            |
| SAU-1               | 0.00            | 0.00            |
| CIM-602 (Std-1)     | 0.00            | 0.00            |
| NS-181              | 0.00            | 0.00            |
| D-19                | 0.00            | 0.00            |
| IUB-65              | 0.00            | 0.00            |
| GH-Mubarak          | 0.00            | 0.00            |
| CIM-625             | 0.00            | 0.00            |
| CEMB-88(DG)         | 0.00            | 0.00            |
| AGC-Nazeer-1        | 0.00            | 0.00            |

#### 4.5.3 Pest situation in Set-C

In this set 22 Bt strains and two standards (CIM-602 & FH-142) were tested for their tolerance/susceptibility to insect pest complex. Jassid and whitefly remained dominant among sucking insect pests. Jassid population was above ETL on Ghauri-1(CEMB-3), Auriga-216, AA-933, Weal-Ag-1606, Thakkar-808, CIM-602 & NIAB-Bt-2 in July while it remained below ETL in August on all the tested strains. Its intensity was higher on NIAB-Bt-2 followed by Thakkar-808 and minimum on BS-80 & RH-668. Population of whitefly remained above ETL during July on CEMB-100(DG), BH-221, Badar-1(CEMB-2), FH-142, VH-Gulzar, Thakkar-808, Tarzan-5, RH-662, NIAB-Bt-2, NIAB-545 & MNH-1016 and its maximum number was recorded on CEMB-100(DG) and lowest on NIAB-1048. While in August it remained above ETL on all strains and its number was higher on CEMB-100(DG) followed by RH-662 & Tarzan-5 and lower on NIAB-1048. Thrips population remained below ETL during July and August on all the tested strains and its intensity was higher on CIM-602 and lower on NIAB-545 (Table-4.12).

Spotted bollworm infestation in immature fruiting parts was higher in CEMB-100(DG) followed by Tipu-1and spotted bollworm larvae were observed in NIAB-Bt-2. While no bollworms damage/larva was observed in mature fruiting parts of all strains (Table-4.13). Pink bollworm infestation was found in Weal-Ag-1606, VH-Gulzar, Thakkar-808, NIAB-Bt-2 & NIAB-545 while no pink bollworm larvae were observed in any strain (Table-4.14).

#### 4.5.4 Pest situation in Set-CEMB

In this set 9 Bt cotton strains were evaluated for their tolerance/susceptibility to insect pest complex. Population of jassid remained below ETL during the July and August. Its population was highest on CEMB-4 followed by CEMB-6 While minimum on CEMB-3 during July. Population of whitefly found below ETL almost on all the strains during July and August. Overall its intensity was highest on CEMB-7 followed by CEMB-4

and CEMB-5 while lowest on CEMB-1 during August. Thrips population remained below ETL on all the testing strains. Overall its population was highest on CEMB-5 followed by CEMB-9 (Tabl-4.15).

Table-4.12Seasonal population of sucking insect pests on different Bt strains

| Strains          | Number of sucking insect pests per leaf |      |       |       |        |      |
|------------------|-----------------------------------------|------|-------|-------|--------|------|
|                  | Jassid                                  |      | White | efly  | Thrips |      |
|                  | July                                    | Aug  | July  | Aug   | July   | Aug  |
| Ghauri-1(CEMB-3) | 1.20                                    | 0.60 | 1.50  | 4.70  | 1.60   | 3.90 |
| CEMB Klean       | 0.80                                    | 0.30 | 3.40  | 5.90  | 1.60   | 4.30 |
| CEMB-100(DG)     | 0.90                                    | 0.50 | 15.10 | 10.50 | 1.60   | 4.50 |
| BS-80            | 0.20                                    | 0.00 | 2.40  | 5.30  | 0.90   | 3.40 |
| BS-18            | 0.70                                    | 0.30 | 2.60  | 5.00  | 0.40   | 2.30 |
| BH-221           | 0.90                                    | 0.40 | 4.80  | 7.30  | 0.50   | 2.50 |
| Bahar-217        | 0.50                                    | 0.30 | 1.70  | 4.70  | 1.50   | 4.00 |
| Badar-1(CEMB-2)  | 0.40                                    | 0.10 | 5.90  | 7.80  | 1.80   | 4.00 |
| FH-142(std-2)    | 0.40                                    | 0.10 | 4.70  | 6.90  | 0.50   | 2.50 |
| Auriga-216       | 2.00                                    | 0.90 | 1.90  | 4.80  | 2.40   | 4.90 |
| AA-933           | 1.60                                    | 0.70 | 2.30  | 5.10  | 0.00   | 1.80 |
| Weal-Ag-1606     | 1.80                                    | 0.80 | 1.80  | 4.80  | 1.20   | 3.60 |
| VH-Gulzar        | 0.60                                    | 0.10 | 4.40  | 6.70  | 1.70   | 4.30 |
| Tipu-1           | 0.40                                    | 0.20 | 2.40  | 5.50  | 1.80   | 4.30 |
| Thakkar-808      | 2.30                                    | 0.20 | 4.40  | 6.90  | 1.20   | 3.70 |
| Tarzan-5         | 0.70                                    | 0.20 | 6.80  | 8.40  | 1.70   | 4.50 |
| CIM-602(std-1)   | 1.90                                    | 0.80 | 2.50  | 5.10  | 2.60   | 6.10 |
| Shaheen-1        | 0.40                                    | 0.10 | 1.30  | 4.50  | 1.40   | 4.20 |
| RH-662           | 0.80                                    | 0.20 | 7.40  | 8.90  | 0.80   | 3.10 |
| RH-668           | 0.20                                    | 0.40 | 2.80  | 5.70  | 1.50   | 4.20 |
| NIAB-Bt-2        | 2.50                                    | 0.90 | 5.30  | 6.80  | 0.40   | 2.90 |
| NIAB-1048        | 0.30                                    | 0.10 | 1.00  | 4.30  | 0.70   | 3.20 |
| NIAB-545         | 0.80                                    | 0.40 | 4.80  | 6.30  | 0.00   | 1.90 |
| MNH-1016         | 0.80                                    | 0.40 | 4.80  | 6.90  | 0.90   | 3.10 |

Table-4.13 Spotted bollworm damage and larval population on different Bt strains

| Strains          | Bollworm | damage % age | SBW larv | ae/ 25 plants |
|------------------|----------|--------------|----------|---------------|
| Strains          | lmm      | Mat          | lmm      | Mat           |
| Ghauri-1(CEMB-3) | 2.33     | 0.00         | 0.00     | 0.00          |
| CEMB Klean       | 0.00     | 0.00         | 0.00     | 0.00          |
| CEMB-100(DG)     | 13.95    | 0.00         | 0.00     | 0.00          |
| BS-80            | 0.00     | 0.00         | 0.00     | 0.00          |
| BS-18            | 5.77     | 0.00         | 0.00     | 0.00          |
| BH-221           | 10.14    | 0.00         | 0.00     | 0.00          |
| Bahar-217        | 0.00     | 0.00         | 0.00     | 0.00          |
| Badar-1(CEMB-2)  | 0.00     | 0.00         | 0.00     | 0.00          |
| FH-142(std-2)    | 0.00     | 0.00         | 0.00     | 0.43          |
| Auriga-216       | 0.00     | 0.00         | 0.00     | 0.00          |
| AA-933           | 9.68     | 0.00         | 0.00     | 0.00          |
| Weal-Ag-1606     | 8.51     | 0.00         | 0.00     | 0.00          |
| VH-Gulzar        | 3.36     | 0.00         | 0.00     | 0.00          |
| Tipu-1           | 13.46    | 0.00         | 0.00     | 0.00          |
| Thakkar-808      | 4.84     | 0.00         | 0.00     | 0.00          |
| Tarzan-5         | 8.62     | 0.00         | 0.00     | 0.00          |
| CIM-602(std-1)   | 0.00     | 0.00         | 0.00     | 0.00          |
| Shaheen-1        | 0.00     | 0.00         | 0.00     | 0.00          |
| RH-662           | 0.00     | 0.00         | 0.00     | 0.00          |
| RH-668           | 1.54     | 0.00         | 0.00     | 0.00          |
| NIAB-Bt-2        | 1.39     | 0.00         | 0.69     | 0.00          |
| NIAB-1048        | 0.00     | 0.00         | 0.00     | 0.00          |
| NIAB-545         | 0.00     | 0.00         | 0.00     | 0.00          |
| MNH-1016         | 0.00     | 0.00         | 0.00     | 0.00          |

Table-4.14 Pink bollworm damage and larval population on different Bt strains

| Strains          | PBW damage %age | PBW larval %age |
|------------------|-----------------|-----------------|
| Ghauri-1(CEMB-3) | 0.00            | 0.00            |
| CEMB Klean       | 0.00            | 0.00            |
| CEMB-100(DG)     | 0.00            | 0.00            |
| BS-80            | 0.00            | 0.00            |
| BS-18            | 0.00            | 0.00            |
| BH-221           | 0.00            | 0.00            |
| Bahar-217        | 0.00            | 0.00            |
| Badar-1(CEMB-2)  | 0.00            | 0.00            |
| FH-142(std-2)    | 0.00            | 0.00            |
| Auriga-216       | 0.00            | 0.00            |
| AA-933           | 0.00            | 0.00            |
| Weal-Ag-1606     | 3.33            | 0.00            |
| VH-Gulzar        | 3.33            | 0.00            |
| Tipu-1           | 0.00            | 0.00            |
| Thakkar-808      | 3.33            | 0.00            |
| Tarzan-5         | 0.00            | 0.00            |
| CIM-602(std-1)   | 0.00            | 0.00            |
| Shaheen-1        | 0.00            | 0.00            |
| RH-662           | 0.00            | 0.00            |
| RH-668           | 0.00            | 0.00            |
| NIAB-Bt-2        | 3.33            | 0.00            |
| NIAB-1048        | 0.00            | 0.00            |
| NIAB-545         | 3.33            | 0.00            |
| MNH-1016         | 0.00            | 0.00            |

Table-4.15 Seasonal population of sucking insect pests on different CEMB strains

|         | otianio                                 |      |      |       |      |      |
|---------|-----------------------------------------|------|------|-------|------|------|
|         | Number of sucking insect pests per leaf |      |      |       |      |      |
| Strains | Jas                                     | ssid | Whi  | tefly | Thi  | rips |
|         | July                                    | Aug  | July | Aug   | July | Aug  |
| CEMB 1  | 0.30                                    | 0.40 | 1.20 | 0.70  | 0.00 | 6.00 |
| CEMB 2  | 0.50                                    | 0.60 | 0.80 | 3.70  | 0.80 | 6.60 |
| CEMB 3  | 0.00                                    | 0.30 | 0.50 | 4.40  | 0.00 | 3.60 |
| CEMB 4  | 0.20                                    | 0.40 | 0.80 | 5.40  | 0.00 | 5.40 |
| CEMB 5  | 0.70                                    | 0.00 | 0.40 | 5.10  | 0.50 | 8.10 |
| CEMB 6  | 0.60                                    | 0.30 | 0.70 | 3.60  | 0.00 | 6.60 |
| CEMB 7  | 0.30                                    | 0.10 | 0.70 | 5.50  | 0.00 | 5.30 |
| CEMB 8  | 0.20                                    | 0.10 | 1.10 | 4.60  | 0.60 | 4.40 |
| CEMB 9  | 0.50                                    | 0.20 | 1.10 | 4.50  | 0.40 | 6.80 |

Table-4.16 Spotted bollworm damage and larval population on different CEMB strains

| Strains | Bollworm | Bollworm damage % age |      | e/ 25 plants |
|---------|----------|-----------------------|------|--------------|
| Strains | lmm      | Mat                   | lmm  | Mat          |
| CEMB 1  | 0.00     | 0.00                  | 0.00 | 0.00         |
| CEMB 2  | 0.00     | 0.00                  | 0.00 | 0.00         |
| CEMB 3  | 0.00     | 0.00                  | 0.00 | 0.00         |
| CEMB 4  | 0.00     | 0.00                  | 0.00 | 0.00         |
| CEMB 5  | 0.00     | 0.00                  | 0.00 | 0.00         |
| CEMB 6  | 0.00     | 0.00                  | 0.00 | 0.00         |
| CEMB 7  | 0.00     | 0.00                  | 0.00 | 0.00         |
| CEMB 8  | 0.00     | 0.00                  | 0.00 | 0.00         |
| CEMB 9  | 0.00     | 0.00                  | 0.00 | 0.00         |

Table-4.17 Pink bollworm damage and larval population on different CEMB strains

| Strains | PBW damage %age | PBW larval %age |
|---------|-----------------|-----------------|
| CEMB 1  | 0.00            | 0.00            |
| CEMB 2  | 0.00            | 0.00            |
| CEMB 3  | 0.00            | 0.00            |
| CEMB 4  | 0.00            | 0.00            |
| CEMB 5  | 0.00            | 0.00            |
| CEMB 6  | 0.00            | 0.00            |
| CEMB 7  | 0.00            | 0.00            |
| CEMB 8  | 0.00            | 0.00            |
| CEMB 9  | 0.00            | 0.00            |

Infestation and live larvae remained zero on all tested strains for spotted bollworm (Table-4.16) and pink Bollworm (Table-4.17).

#### 4.5.5 Pest situation in Set-NTTT

In this set 10 cotton strains were evaluated for their tolerance/susceptibility to insect pest complex. Population of jassid remained below ETL during the July and August. Whitefly population remained below ETL on all the strains during study period except on NTTT-3 in August. Thrips population remained below ETL on all the testing strains during study period (Table-4.18).

Table-4.18 Seasonal population of sucking insect pests on different strains in Set-NTTT

|         |      | Number o | of sucking i | nsect pests | per leaf |        |  |
|---------|------|----------|--------------|-------------|----------|--------|--|
| Strains | Jas  |          |              | tefly       | Thri     | Thrips |  |
|         | July | Aug      | July         | Aug         | July     | Aug    |  |
| NTTT-1  | 0.0  | -        | 0.2          | -           | 0.0      | -      |  |
| NTTT-2  | 0.0  | -        | 0.1          | -           | 0.0      | -      |  |
| NTTT-3  | 0.4  | 0.2      | 0.2          | 5.7         | 0.0      | 0.8    |  |
| NTTT-4  | 0.0  | -        | 0.2          | -           | 0.0      | -      |  |
| NTTT-5  | 0.0  | -        | 0.2          | -           | 0.0      | -      |  |
| NTTT-6  | 0.0  | 0.0      | 0.6          | 2.4         | 0.0      | 0.3    |  |
| NTTT-7  | 0.8  | 0.1      | 0.3          | 2.7         | 0.3      | 0.8    |  |
| NTTT-8  | 0.2  | 0.1      | 0.5          | 3.8         | 0.0      | 0.5    |  |
| NTTT-9  | 0.4  | 0.0      | 0.6          | 2.3         | 0.0      | 0.4    |  |
| NTTT-10 | 0.5  | 0.0      | 0.1          | 1.8         | 0.0      | 3.1    |  |

<sup>- =</sup> Plants were severely effected in these treatments

Table-4.19 Spotted bollworms damage and larval population on different strains in Set-NTTT

| Oli ali io | Ciralio III GOL IVI I I |              |           |              |  |  |  |
|------------|-------------------------|--------------|-----------|--------------|--|--|--|
| Strains    | Bollworm                | damage % age | SBW larva | e/ 25 plants |  |  |  |
| Strains    | lmm                     | Mat          | lmm       | Mat          |  |  |  |
| NTTT-1     | -                       | -            | -         | -            |  |  |  |
| NTTT-2     | -                       | -            | -         | -            |  |  |  |
| NTTT-3     | 0.00                    | 0.00         | 0.00      | 0.00         |  |  |  |
| NTTT-4     | -                       | -            | -         | -            |  |  |  |
| NTTT-5     | -                       | -            | -         | -            |  |  |  |
| NTTT-6     | 0.00                    | 0.00         | 0.00      | 0.00         |  |  |  |
| NTTT-7     | 0.00                    | 0.00         | 0.00      | 0.00         |  |  |  |
| NTTT-8     | 0.00                    | 0.00         | 0.00      | 0.00         |  |  |  |
| NTTT-9     | 0.00                    | 0.00         | 0.00      | 0.00         |  |  |  |
| NTTT-10    | 0.00                    | 0.00         | 0.00      | 0.00         |  |  |  |

<sup>- =</sup> Plants were severely effected in these treatments

Table-4.20 Pink bollworms damage and larval population on different strains in Set-NTTT

| Strains | PBW damage %age | PBW larval %age |
|---------|-----------------|-----------------|
| NTTT-1  | -               | -               |
| NTTT-2  | -               | -               |
| NTTT-3  | 0.00            | 0.00            |
| NTTT-4  | -               | -               |
| NTTT-5  | -               | -               |
| NTTT-6  | 0.00            | 0.00            |
| NTTT-7  | 0.00            | 0.00            |
| NTTT-8  | 0.00            | 0.00            |
| NTTT-9  | 0.00            | 0.00            |
| NTTT-10 | 0.00            | 0.00            |

<sup>-=</sup> Plants were severely effected in these treatments

Infestation and live larvae remained zero on all tested strains for spotted bollworm (Table-4.19) and pink Bollworm (Table-4.20).

# 4.6 Host plant tolerance studies of CCRI strains

#### 4.6.1 Studies on conventional strains

Two conventional promising strains viz. Cyto-122 and Cyto-225 developed by CCRI, Multan were tested for their tolerance/susceptibility against major insect pests. Cultivar Cyto-124 was kept as standard. The trial was sown on May 16, 2017 using RCBD with three sets. Each set was replicated three times having plot size of 16'x30'. Set-I was sprayed for only sucking pests. In Set-II, bollworms were controlled and sucking pests were allowed to develop till harvest, while in Set-III both sucking pests and bollworms were controlled with insecticides. Data on population of sucking pests and damage cause by bollworms were recorded from Set-I and Set-II, respectively. Crop was harvested to quantify production potential (Table-4.21).

Table-4.21 Jassid Population per leaf in Non-Bt Varieties (Set-II)

| Observation    | Jassid Population per leaf |          |          |  |  |
|----------------|----------------------------|----------|----------|--|--|
| Dates          | Cyto-122                   | Cyto-225 | Cyto-124 |  |  |
| 29.06.2017     | 2.96                       | 3.30     | 3.56     |  |  |
| 13.07.2017     | 0.30                       | 0.23     | 0.30     |  |  |
| 20.07.2017     | 0.56                       | 0.56     | 0.60     |  |  |
| 27.07.2017     | 0.13                       | 0.46     | 0.33     |  |  |
| 03.08.2017     | 0.76                       | 1.10     | 0.96     |  |  |
| 10.08.2017     | 0.43                       | 0.42     | 0.43     |  |  |
| <u>Average</u> |                            |          |          |  |  |
| June           | 2.96                       | 3.30     | 3.56     |  |  |
| July           | 0.33                       | 0.42     | 0.41     |  |  |
| August         | 0.60                       | 0.76     | 0.70     |  |  |

In Set-II, in 4<sup>th</sup> week of June all three strains attained economic threshold level (ETL) with relatively higher population on Cyto-124. Afterwards all strains were below economic threshold level (ETL) in the month of August with relatively higher population on Cyto-225 in 1<sup>st</sup> week of August. The population remained fluctuating during the 2<sup>nd</sup> week of July and August on all strains. Over all pest pressure was higher on Cyto-124 & lower on Cyto-122. Whitefly remained below economic threshold level (ETL) during June which increased afterward and in the 3<sup>rd</sup> and 4<sup>th</sup> week of august population remained fluctuating on all strain. Over all pest pressure was higher on Cyto-122 and lower on Cyto-124 (Table-4.22).

Table-4.22 Whitefly Population per leaf in Non-Bt Varieties (Set-II)

| Observation    | Whitefly Population per leaf |          |          |  |  |
|----------------|------------------------------|----------|----------|--|--|
| Dates          | Cyto-122                     | Cyto-225 | Cyto-124 |  |  |
| 29.06.2017     | 1.90                         | 1.06     | 1.20     |  |  |
| 13.07.2017     | 0.96                         | 1.30     | 1.36     |  |  |
| 20.07.2017     | 3.20                         | 4.13     | 2.56     |  |  |
| 27.07.2017     | 4.20                         | 4.60     | 2.80     |  |  |
| 03.08.2017     | 1.80                         | 2.30     | 1.90     |  |  |
| 10.08.2017     | 3.56                         | 3.03     | 4.86     |  |  |
| <u>Average</u> |                              |          |          |  |  |
| June           | 1.90                         | 1.06     | 1.20     |  |  |
| July           | 2.79                         | 3.34     | 2.24     |  |  |
| August         | 2.68                         | 2.67     | 3.38     |  |  |

Thrips remained below economic threshold level (ETL) thorough out the season on all tested cultivars (Table-4.23).

In Set-I, spotted bollworm was the major pest and initially its infestation was higher on Cyto-225 and Cyto-124 respectively and its infestation was on its peak in Cyto-122 & Cyto-225 during 1<sup>st</sup> week of October. During October, its infestation was lower on Cyto-124. Overall pest infestation was maximum on Cyto-225 and minimum on Cyto-124 (Fig. 4.5).

Table-4.23 Thrips Population per leaf in Non-Bt Varieties (Set-II)

| Observation    | Thrips Population per leaf |          |          |  |  |  |
|----------------|----------------------------|----------|----------|--|--|--|
| Dates          | Cyto-122                   | Cyto-225 | Cyto-124 |  |  |  |
| 29.06.2017     | 0.00                       | 0.23     | 0.03     |  |  |  |
| 13.07.2017     | 1.80                       | 1.23     | 1.63     |  |  |  |
| 20.07.2017     | 3.60                       | 2.20     | 4.86     |  |  |  |
| 27.07.2017     | 1.70                       | 0.20     | 1.36     |  |  |  |
| 03.08.2017     | 3.10                       | 3.40     | 2.50     |  |  |  |
| 10.08.2017     | 5.83                       | 6.50     | 5.43     |  |  |  |
| <u>Average</u> |                            |          |          |  |  |  |
| June           | 0.00                       | 0.23     | 0.03     |  |  |  |
| July           | 2.37                       | 1.21     | 2.62     |  |  |  |
| August         | 4.47                       | 4.95     | 3.97     |  |  |  |

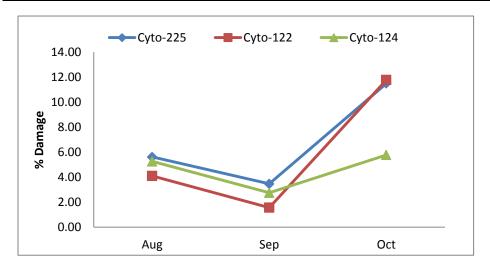



Fig 4.5 Bollworms trend in Non-Bt Promising Varieties

In Set-I, Cyto-225 produced maximum and Cyto-124 minimum seed cotton yield, while in Set II, Cyto-122 gave higher yield. Whereas in Set III, maximum seed cotton yield was recorded where both sucking pests and bollworms were controlled, among the strains maximum yield was obtained in Cyto-122 followed by Cyto-225. Reduction in seed cotton yield was higher due to the attack of bollworms compared to the sucking pests in Set-II (Table-4.24).

Pink bollworm infestation was also observed in green bolls in mid-September and October from Set-I where bollworms were allowed to develop. Among the testing strains, all were highly susceptible to this pest and its damage/larval survival percentage ranged 3.33-20.0.

Table-4.24 Pink bollworm damage/larvae in green bolls and seed cotton yield in different sets

| Strain   | Seed co | tton yield | (kg ha <sup>-1</sup> ) | % pink bollworm<br>(Set-I) Sep |        | % pink bollworm<br>(Set-I) Oct |        |
|----------|---------|------------|------------------------|--------------------------------|--------|--------------------------------|--------|
|          | Set-I   | Set-II     | Set-III                | Damage                         | Larvae | Damage                         | Larvae |
| Cyto-225 | 2242    | 1869       | 2541                   | 20.00                          | 16.67  | 6.67                           | 3.33   |
| Cyto-122 | 2093    | 2168       | 2616                   | 3.33                           | 3.33   | 6.67                           | 3.33   |
| Cyto-124 | 1943    | 2018       | 2168                   | 13.33                          | 6.67   | 3.33                           | 3.33   |
| CD at 5% | 973.41  | 748.27     | 794.79                 | 11.95                          | 17.22  | 15.11                          | 13.08  |

#### 4.6.2 Studies on Bt strains

Three *Bt* promising strains viz.Cyto-305, Cyto-307& Cyto-313 developed by CCRI, Multan were tested for their tolerance/susceptibility against major insect pests. Cyto-179 was kept as standard. The trial was sown on May 16, 2017 using RCBD with two sets. Each set was replicated three times having plot size of 40'x20'. Set-II was kept unsprayed for sucking pests, while in Set-I sucking pests controlled with insecticides. Data on population of sucking pests and percentage bollworms damage were recorded. Crop was harvested to quantify production potential.

In Set-II, jassid and whitefly were the major pests. Jassid reached ETL on all tested strains in the 4<sup>th</sup> week of June and decreased afterwards in July and August. Overall its intensity was comparatively higher on Cyto-305 and lower on Cyto-313 **(Table-4.25).** 

Table-4.25 Jassid Population per leaf in Bt Varieties (Set-II)

| Observation | Jassid Population per leaf |          |          |          |  |  |
|-------------|----------------------------|----------|----------|----------|--|--|
| Dates       | Cyto-305                   | Cyto-307 | Cyto-313 | Cyto-179 |  |  |
| 29.06.2017  | 7.63                       | 7.70     | 6.56     | 7.60     |  |  |
| 06.07.2017  | 0.23                       | 0.00     | 0.43     | 0.23     |  |  |
| 13.07.2017  | 0.00                       | 0.26     | 0.46     | 0.10     |  |  |
| 20.07.2017  | 0.30                       | 0.30     | 0.50     | 0.20     |  |  |
| 03.08.2017  | 0.70                       | 0.70     | 0.83     | 1.50     |  |  |
| 10.08.2017  | 0.43                       | 0.33     | 0.46     | 0.53     |  |  |
| Average     |                            |          |          |          |  |  |
| June        | 7.63                       | 7.60     | 6.56     | 7.60     |  |  |
| July        | 0.18                       | 0.19     | 0.46     | 0.18     |  |  |
| August      | 0.57                       | 0.52     | 0.65     | 1.02     |  |  |

Whitefly remained below ETL from June to mid-July which increased afterwards from 1<sup>st</sup> week of July to 2<sup>nd</sup> week of August on all the strain. Its population remained fluctuating throughout the cropping seasons. Overall Cyto-305 proved most and Cyto-313 least preferred strain for this pest **(Table-4.26).** 

Thrips population remained below the ETL during the July and its population remained fluctuating upto crop termination. Overall Cyto-313 proved most and Cyto-179 least preferred strain for this pest (**Table-4.27**).

Table-4.26 Whitefly Population per leaf in Bt Varieties (Set-II)

| Observation    | Whitefly Population per leaf |          |          |          |  |  |
|----------------|------------------------------|----------|----------|----------|--|--|
| Dates          | Cyto-305                     | Cyto-307 | Cyto-313 | Cyto-179 |  |  |
| 29.06.2017     | 0.16                         | 0.30     | 0.36     | 0.50     |  |  |
| 06.07.2017     | 2.56                         | 2.26     | 1.36     | 2.63     |  |  |
| 13.07.2017     | 0.90                         | 0.83     | 0.76     | 1.26     |  |  |
| 20.07.2017     | 2.20                         | 1.40     | 1.50     | 1.80     |  |  |
| 03.08.2017     | 3.10                         | 2.60     | 2.00     | 3.60     |  |  |
| 10.08.2017     | 4.60                         | 2.50     | 2.76     | 2.76     |  |  |
| <u>Average</u> |                              |          |          |          |  |  |
| June           | 0.16                         | 0.30     | 0.36     | 0.50     |  |  |
| July           | 1.89                         | 1.50     | 1.21     | 1.90     |  |  |
| August         | 3.85                         | 2.55     | 2.38     | 3.18     |  |  |

Table-4.27Thrips Population per leaf in Bt Varieties (Set-II)

| Observation    | Thrips Population per leaf |          |          |          |  |  |  |
|----------------|----------------------------|----------|----------|----------|--|--|--|
| Dates          | Cyto-305                   | Cyto-307 | Cyto-313 | Cyto-179 |  |  |  |
| 29.06.2017     | 0.00                       | 0.13     | 0.00     | 0.00     |  |  |  |
| 06.07.2017     | 0.00                       | 0.00     | 0.00     | 0.00     |  |  |  |
| 13.07.2017     | 18.00                      | 0.13     | 0.10     | 0.00     |  |  |  |
| 20.07.2017     | 1.60                       | 3.80     | 1.80     | 1.30     |  |  |  |
| 03.08.2017     | 5.50                       | 4.20     | 7.60     | 2.70     |  |  |  |
| 10.08.2017     | 3.20                       | 5.50     | 5.20     | 3.40     |  |  |  |
| <u>Average</u> |                            |          |          |          |  |  |  |
| June           | 0.00                       | 0.13     | 0.00     | 0.00     |  |  |  |
| July           | 6.53                       | 1.31     | 0.63     | 0.43     |  |  |  |
| August         | 4.35                       | 4.85     | 6.40     | 3.05     |  |  |  |

Pink bollworm was the major and only pest observed throughout the fruiting seasons on all the tested strains. Its infestation and larval survival were observed in green bolls. It was below ETL in both sets but its intensity was higher in Set-I where sucking pests were allowed to develop. Among the strains, its intensity was highest on Cyto-307 and lowest on Cyto-179 in September in Set-I (Table-4.28).

Table-4.28 Pink bollworm damage/larvae in green bolls

|          |         | damage   |         | larval   |         | lamage   |         | larval   |  |
|----------|---------|----------|---------|----------|---------|----------|---------|----------|--|
| Strain   | %ag     | %age Sep |         | %age Sep |         | %age Oct |         | %age Oct |  |
|          | Set-I** | Set-II*  | Set-I** | Set-II*  | Set-I** | Set-II*  | Set-I** | Set-II*  |  |
| Cyto-305 | 6.67    | 0.00     | 0.00    | 0.00     | 0.00    | 0.00     | 3.33    | 0.00     |  |
| Cyto-307 | 13.33   | 6.67     | 10.00   | 3.33     | 6.67    | 3.33     | 3.33    | 3.33     |  |
| Cyto-313 | 6.67    | 6.67     | 6.67    | 3.33     | 0.00    | 3.33     | 0.00    | 3.33     |  |
| Cyto-179 | 10.00   | 3.33     | 6.67    | 0.00     | 3.33    | 0.00     | 0.00    | 0.00     |  |
| CD at 5% | 7.45    | 7.45     | 8.81    | 8.81     | 7.45    | 8.81     | 8.81    | 8.81     |  |

<sup>\*\* =</sup> Sucking pests controlled at ETL\* = Sucking pests allowed

In Set-II, seed cotton yield was comparatively higher where sucking insect pests were controlled than set-I where they were allowed to develop. Among the cultivars, Cyto-305 produced highest seed cotton yield, whereas, Cyto-179 gave the lowest yield in both sets (Table-4.29).

Table-4.29 Seed cotton yield in different sets

| Strain   | Seed cotton yield (kg ha <sup>-1</sup> ) |         |  |  |
|----------|------------------------------------------|---------|--|--|
|          | Set-I**                                  | Set-II* |  |  |
| Cyto-313 | 2736                                     | 2377    |  |  |
| Cyto-307 | 2198                                     | 2467    |  |  |
| Cyto-305 | 2781                                     | 2512    |  |  |
| Cyto-179 | 2198                                     | 2153    |  |  |
| CD at 5% | 580.69                                   | 709.79  |  |  |

<sup>\* =</sup> Sucking pests allowed

<sup>\*\* =</sup> Sucking pests controlled at ETL

# 4.7 Insecticide resistance monitoring in Dysdercus koenigii

*Dysdercus koenigii*, Red cotton bug collected from cotton fields at Multan and Makhdoom-Rashid were exposed to five insecticides viz. acetamiprid, lambda-cyhalothrin, deltamethrin, emamcetin benzoate and tracer using seed dip method. Third instars of red cotton bugs were exposed and observations on mortality were taken 48 h after treatment. Resistance ratio (RR) was calculated by dividing LC<sup>50</sup> of field population with LC<sup>50</sup> of susceptible population (Lab-Sus).

Very high level of resistance to acetamiprid was detected in tested populations of both locations as compared to the Lab-Sus population. Very low to moderate level of resistance were observed for spinosad. *D. koenigii* showed moderate level of resistance to Emamectin benzoate and very low to moderate levels of resistance to spinosad compared to the Lab-Sus. While no to very low levels of resistance to Pyrethroids (lambdacyhalothrin and deltamethrin) were observed in field populations of both locations.

Among the locations, Multan population showed higher LC<sup>50</sup> and RR values for

Among the locations, Multan population showed higher LC<sup>50</sup> and RR values for acetamiprid and emamectin benzoate compared to Makhdoom-Rashid population **(Table-4.30)**.

Table-4.30 Response of *Dysdercus koenigii* (Red cotton bug) to different insecticides collected from cotton

| Insecticide        | Location        | Slope <u>+</u> SE | LC50<br>(ppm) | 95% fiducial<br>limits | RR    |
|--------------------|-----------------|-------------------|---------------|------------------------|-------|
| Acetamiprid        | Lab-Sus         | 0.94 ± 0.22       | 0.79          | 0.35–1.63              | 1     |
|                    | Multan          | 1.48 ± 0.27       | 162.25        | 99.46–281.53           | 205.4 |
|                    | Makhdoom-Rashid | 1.58 ± 0.28       | 151.30        | 94.57–252.76           | 191.5 |
| Lambda-cyhalothrin | Lab-Sus         | 0.81± 0.15        | 0.009         | 0.004 – 0.019          | 1     |
|                    | Multan          | 1.54± 0.30        | 0.019         | 0.010- 0.031           | 2.1   |
|                    | Makhdoom-Rashid | 1.33± 0.23        | 0.034         | 0.018- 0.056           | 3.8   |
| Deltamethrin       | Lab-Sus         | 0.85± 0.14        | 0.009         | 0.004– 0.017           | 1     |
|                    | Multan          | 1.74± 0.39        | 0.017         | 0.009- 0.027           | 1.9   |
|                    | Makhdoom-Rashid | 0.85± 0.19        | 0.021         | 0.006 0.044            | 2.3   |
| Spinosad           | Lab-Sus         | 0.60± 0.12        | 0.84          | 0.29-2.03              | 1     |
|                    | Multan          | 1.01± 0.28        | 8.06          | 3.27- 17.20            | 9.6   |
|                    | Makhdoom-Rashid | 1.24± 0.31        | 22.90         | 12.71– 59.23           | 27.3  |
| Emamectin benzoate | Lab-Sus         | 0.55± 0.21        | 0.93          | 0.04– 2.90             | 1     |
|                    | Multan          | 1.63 ±0.39        | 32.34         | 19.70–73.29            | 34.8  |
|                    | Makhdoom-Rashid | 1.05 ±0.30        | 27.42         | 13.80–1110.30          | 29.5  |

\_\_\_\_\_

## 5. PLANT PATHOLOGY SECTION

Research studies were carried out on the prevalence, management and control strategy of various cotton diseases, viz., cotton leaf curl (Burewala Strain of Cotton Virus), boll rot, and wilting of cotton. Experiments were conducted under greenhouse and field conditions. The promising strains under Pakistan Central Cotton Committee's (PCCC) i.e. National Coordinated Varietal Trial (NCVT) and Punjab Government Trial i.e. Provincial Cotton Coordinated Trial (PCCT), for Bt. and non Bt. varieties were screened for their reaction to various diseases. The results obtained there in are reported as under.

#### 5.1 Estimation of Cotton Diseases

A survey was conducted during cotton cropping season to record the prevalence of cotton leaf curl (CLCuV) disease in different parts of the Punjab. The incidence of cotton leaf curl disease (CLCuD) was maximum in areas of, Khanewal, Burewala Vehari, and minimum in cotton areas of Multan Shujabad Depal Pur, Lodhran, Kehror Pakka, Kabirwala, Layyah Sahiwal, and Arif Wala. There was no incidence of CLCuD in the areas of Muzzafar Garh, Bahawal Pur, Bahawal, Nager Haroon Abad, and Jam Pur.. Overall position of CLCuD with crop cultivation period from March to June indicates that the crop cultivated from the month of March to May showed minimums disease incidence and severity level whereas crops cultivated during the month of June showed maximum level of disease incidence and severity.

The incidence of boll rot varied from 1 to 2 percent. Boll rot due to secondary pathogens was observed only on a few spots. The occurrence of stunting phenomenon was very low. The prevalence of bacterial blight and leaf spot of cotton was minimal. Blackening of leaves was observed in all spots

## 5.2 Screening of Breeding Material against CLCuD

#### 5.2.1 Screening under field conditions

The advanced strains/genotypes of this Institute included in varietal, micro varietal trials and various national coordinated varietal trials were screened for their reaction to CLCuD under field conditions. One hundred eighteen families were screened during the year. One hundred fifteen families of breeding material, showed symptoms of the CLCuD under filed conditions. However, three families showed resistance against CLCuD, in VT-4(CM-43) and in VT-5 (CM-50) Where as in MVT-3 (1413/7,) showed resistance against the disease (Table 5.1).

Table 5.1 Screening of Breeding Material under field condition

| Experiment | No. of   | No. of Families | Disease index       | Name of strain |
|------------|----------|-----------------|---------------------|----------------|
| -          | Families | showing Res.    | Range               | Resistance or  |
|            | Screened | to CLCuD        |                     | Tolerance      |
| VT-1       | 8        | 0               | 69.7 ~ 81.0         |                |
| VT-2       | 12       | 0               | 16.46 ~73.53        |                |
| VT-3       | 8        | 0               | 45.68~ 76.52        | *              |
| VT-4       | 10       | 0               | <b>6.93~</b> 75.03  |                |
| VT-5       | 9        | 1               | <b>0.00~</b> 81.08  | CM-43          |
| VT-6       | 9        | 1               | <b>0.00</b> ~ 77.98 | CM-50          |
| MVT-1      | 10       |                 | 33.70~79.22         |                |
| MVT-2      | 7        | 0               | <b>1.53</b> ~ 76.10 |                |
| MVT-3      | 8        | 1               | <b>0.00</b> ~ 80.18 | 1413/7         |
| MVT-4      | 8        | 0               | 48.66 ~78.66        |                |
| MVT-5      | 8        | 0               | 46.73 ~76.98        | ^              |
| MVT-6      | 11       | 0               | 36.62~ 78.09        |                |
| MVT-7      | 10       | 0               | 60.35 ~82.48        |                |
| NCVT-A     | 15       | 0               | 72.33 ~79.37        |                |
| NCVT-B     | 24       | 0               | 48.7~78.2           |                |
| NCVT-C     | 24       | 0               | 73.02~77.01         |                |
| NCVT-D     | 24       | 0               | 44.55~79.38         |                |
| NCVT-E     | 22       | 0               | 74.01~78.84         |                |
| PCCC-I     | 40       | 0               | 73.00~81.48         |                |
| PCCC-II    | 4        | 0               | 71.55~74.31         |                |
| SVT-I      | 26       | 0               | 34.30~ <b>84.64</b> |                |
| SVT-II     | 18       | 0               | 73.98~79.41         |                |
| Total      | 118      | 3               |                     |                |

VT = Varietal Trial

MVT = Micro-Varietal Trial

VT = Varietal Trial MVT = Micro-Varietal Trial PCCT = Punjab Coordinated Cotton Trial NCVT = National Coordinated Varietal Trial

SVT = Standard Varietal Trail

Six NTTT strains out of ten germinated All these strains found highly susceptible to cotton leaf curl disease. Minimum disease severity and index was recorded in strain 7. Maximum disease index (56.74 %) was observed in strain 6. (Table 5.2)

Table 5.2 **Evaluation of National Technology Testing Trial against CLCuV** 

| Strains | 60 DAP | 90 DAP | 120DAP | D.S  | D.I   |
|---------|--------|--------|--------|------|-------|
| 1       | -      |        |        |      |       |
| 2       |        |        |        |      |       |
| 3       | 36.83  | 97.14  | 100.00 | 2.08 | 52.09 |
| 4       |        |        |        |      |       |
| 5       |        |        |        |      |       |
| 6       | 56.09  | 97.62  | 100.00 | 2.27 | 56.74 |
| 7       | 33.57  | 96.97  | 100.00 | 2.07 | 51.77 |
| 8       | 35.28  | 88.51  | 100.00 | 2.17 | 54.26 |
| 9       | 38.67  | 88.61  | 100.00 | 2.19 | 54.83 |
| 10      | 38.70  | 87.14  | 100.00 | 2.21 | 55.22 |
| Max     | 56.09  | 97.62  | 100.00 | 2.27 | 56.74 |
| Min     | 33.57  | 87.14  | 100.00 | 2.07 | 51.77 |

Immune=0

Highly Tolerant=0-10 Tolerant=10-30 Susceptible=30-50

Highly Susceptible

## 5.3 Evaluation of National Coordinated Varietal Trial against Different Diseases

National coordinated Varietal Trial were planted in four sets, Set-A fifteen strains (non-Bt), Set-B and Set-C twenty-two Bt strains/lines were tested against stunting, boll rot and Cotton Leaf Curl Disease under field conditions.

#### **NCVT-Set-A**

All the NCVT strains found highly susceptible to cotton leaf curl disease. Minimum disease severity and index was recorded in CIM-620(std). Maximum disease index, boll rot (5.41%) and stunting (3.19%) was observed in TH 17. (Table 5.3)

#### **NCVT-Set-B**

All the NCVT strains found highly susceptible to cotton leaf curl disease. Minimum disease incidence and disease index was recorded in NS 181. Maximum CLCuD severity and disease index was observed in CRIS-600. Incidence of boll rot was recorded in strain 20 (2.49%). whereas stunting was recorded in all strains in traces (Table-5.4).

#### **NCVT-Set-C**

All the NCVT strains observed highly susceptibility to cotton leaf curl disease. Minimum disease severity and disease index was recorded in BS-18. Maximum, disease severity and disease index was observed in NIAB-545. Maximum boll rot incidence was recorded in Auriga-216 (2.68%) stunting was recorded only in Gauri-1(CEMB-3) and Bahar-217 i-e (1.72 &0.78) respectively (Table-5.5)

Table-5.3 Stunting, Cotton Leaf Curl Disease Incidence, Severity, Disease Index and Boll Rot of Cotton on NCVT Set-A

| NCVT          | Stunting | Cot           | ton Leaf Curl Dise  | ase           | Boll    |
|---------------|----------|---------------|---------------------|---------------|---------|
| Set A Strain  | %age     | Disease % age | Disease<br>Severity | Disease Index | Rot (%) |
| TH-17         | 3.19     | 100           | 3.2                 | 79.4          | 5.41    |
| GS-Ali-7      | 0.00     | 100           | 3.1                 | 77.1          | 0.96    |
| NIA-887       | 1.96     | 100           | 3.1                 | 76.9          | 0.56    |
| CRIS-616      | 0.00     | 100           | 3.2                 | 79.4          | 2.07    |
| Cyto-225      | 0.00     | 100           | 3.0                 | 75.0          | 1.52    |
| CRIS-129(std) | -        |               |                     |               | -       |
| CIM-717       | 0.00     | 100           | 3.2                 | 78.9          | 1.02    |
| TH-88/11      | 1.70     | 100           | 3.1                 | 77.0          | 0.36    |
| Tipu-2        | 0.55     | 100           | 3.0                 | 75.7          | 0.33    |
| Thakkar-214   | 0.00     | 100           | 3.2                 | 79.4          | 2.04    |
| CIM-620(std)  | 0.00     | 100           | 2.9                 | 72.3          | 0.59    |
| NIAB-444      | 0.00     | 100           | 3.0                 | 75.0          | 0.66    |
| MPS-61        | 0.00     | 100           | 3.1                 | 77.1          | 0.71    |
| CIM-610       | 0.00     | 100           | 3.0                 | 75.1          | 2.63    |
| PB-896        | 0.00     | 100           | 3.0                 | 74.7          | 2.25    |

Disease Severity

**Disease Index**= Disease percentage x Disease severity/maximum severity value (4)

<sup>\*</sup>**0** = Complete absence of symptoms

<sup>1 =</sup> Small scattered vein thickening

<sup>2 = =</sup> Large groups of veins involved

<sup>3 =</sup>All veins involved

<sup>4 =</sup> All veins involved and severe curling

Table-5.4 Stunting, Cotton Leaf Curl Disease Incidence, Severity, Disease Index and Boll Rot of Cotton on NCVT Set-B

| NCVT           | Stunting         | Cott          | on Leaf Curl Dise   | ase              | Boll    |
|----------------|------------------|---------------|---------------------|------------------|---------|
| Set B Strain   | Stunting<br>%age | Disease % age | Disease<br>Severity | Disease<br>Index | Rot (%) |
| CEMB-Klean     | 1.39             | 100           | 3.03                | 75.63            | 1.74    |
| B-2            | 0.00             | 100           | 2.92                | 73.05            | 0.57    |
| GH-Deebal      | 0.00             | 100           | 2.92                | 72.96            | 1.09    |
| FH-192         | 0.00             | 100           | 2.95                | 73.69            | 1.08    |
| Eagle-2        | 0.00             | 100           | 2.92                | 72.99            | 1.66    |
| Cyto-313       | 1.89             | 100           | 2.91                | 72.70            | 1.29    |
| Crystle-12     | 0.00             | 81.5          | 2.95                | 60.19            | 1.81    |
| CRIS-600       | 0.00             | 100           | 3.13                | 78.19            | 1.87    |
| FH-142(std-2)  | 0.00             | 100           | 3.00                | 75.04            | 1.75    |
| CIM-632        | 0.00             | 100           | 2.91                | 72.70            | 0.76    |
| CEMB-55(DG)    | 0.00             | 100           | 2.95                | 73.76            | 1.18    |
| BH-201         | 1.79             | 100           | 2.99                | 74.70            | 2.00    |
| Bakhtawar-1    | 0.00             | 100           | 2.96                | 74.08            | 0.85    |
| Bahar-07       | 1.89             | 100           | 2.97                | 74.37            | 1.37    |
| Sitara-15      | 0.00             | 100           | 2.96                | 73.98            | 0.26    |
| SAU-1          | 0.55             | 100           | 2.92                | 73.04            | 2.30    |
| CIM-602(std-1) | 0.00             | 100           | 2.89                | 72.27            | 1.81    |
| NS-181         | 0.00             | 66.7          | 2.92                | 48.72            | 1.35    |
| D-19           | 0.00             | 100           | 3.01                | 75.14            | 0.59    |
| IUB-65         | 0.00             | 100           | 2.93                | 73.25            | 2.49    |
| GH-Mubarik     | 0.64             | 100           | 2.94                | 73.52            | 1.65    |
| CIM-625        | 0.00             | 100           | 2.92                | 73.06            | 1.17    |
| CEMB-88(DG)    | 0.00             | 100           | 2.99                | 74.69            | 1.34    |
| AGC.Nazeer-1   | 1.39             | 100           | 2.92                | 72.93            | 2.28    |

Disease Index= Disease percentage x Disease severity/maximum severity value (4)

Table-5.5 Stunting, Cotton Leaf Curl Disease Incidence, Severity, Disease Index and Boll Rot of Cotton on NCVT Set-C

| NCVT             | Stunting | Co            | Boll             |               |         |
|------------------|----------|---------------|------------------|---------------|---------|
| Set C Strain     | %age     | Disease % age | Disease Severity | Disease Index | Rot (%) |
| Ghauri-1(CEMB-3) | 1.52     | 100           | 3.06             | 76.60         | 0.53    |
| CEMB Klean       | 0.00     | 100           | 2.97             | 74.27         | 0.00    |
| CEMB-100(DG)     | 0.00     | 100           | 3.07             | 76.66         | 1.57    |
| BS-80            | 0.00     | 100           | 3.03             | 75.73         | 0.30    |
| BS-18            | 0.00     | 100           | 2.92             | 73.02         | 0.52    |
| BH-221           | 0.00     | 100           | 3.01             | 75.35         | 0.82    |
| Bahar-217        | 0.78     | 100           | 2.98             | 74.51         | 0.62    |
| Badar-1(CEMB-2)  | 0.00     | 100           | 2.99             | 74.78         | 0.56    |
| FH-142(std-2)    | 0.00     | 100           | 3.04             | 75.91         | 1.16    |
| Auriga-216       | 0.00     | 100           | 3.03             | 75.74         | 2.68    |
| AA-933           | 0.00     | 100           | 3.04             | 76.08         | 1.17    |
| Weal-Ag-1606     | 0.00     | 100           | 3.05             | 76.21         | 0.94    |
| VH-Gulzar        | 0.00     | 100           | 3.06             | 76.58         | 1.25    |
| Tipu-1           | 0.00     | 100           | 3.01             | 75.31         | 1.03    |
| Thakkar-808      | 0.00     | 100           | 3.03             | 75.80         | 0.28    |
| Tarzan-5         | 0.00     | 100           | 2.94             | 73.54         | 0.31    |
| CIM-602(std-1)   | 0.00     | 100           | 3.01             | 75.27         | 0.60    |
| Shaheen-1        | 0.00     | 100           | 2.99             | 74.82         | 0.88    |
| RH-662           | 0.00     | 100           | 3.03             | 75.77         | 0.62    |
| RH-668           | 0.00     | 100           | 2.94             | 73.53         | 0.57    |
| NIAB-Bt-2        | 0.00     | 100           | 3.05             | 76.34         | 0.56    |
| NIAB-1048        | 0.00     | 100           | 3.08             | 77.01         | 0.28    |
| NIAB-545         | 0.00     | 100           | 3.13             | 78.23         | 0.00    |
| MNH-1016         | 0.00     | 100           | 2.98             | 74.55         | 1.70    |

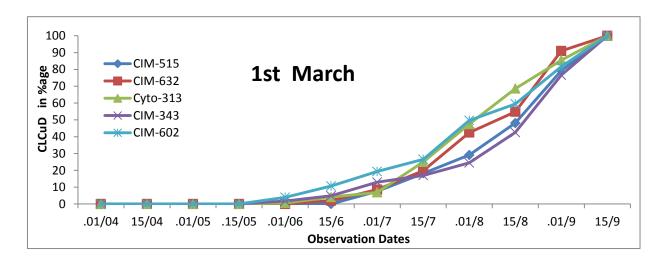
Disease Index= Disease percentage x Disease severity/maximum severity value (4)

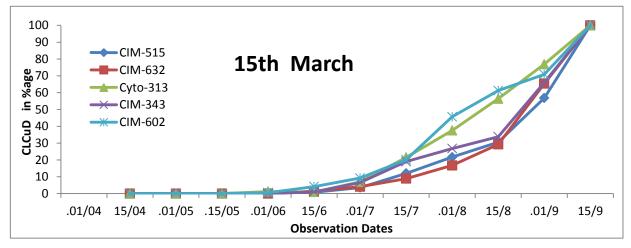
#### 5.4 Epidemiological Studies on CLCuD

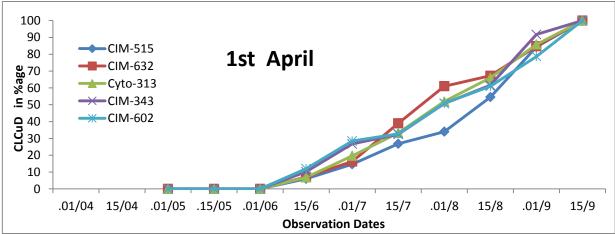
# 5.4.1 Incidence of Cotton Leaf Curl Disease (CLCuD) in Sowing Date Trial (a) Effect of sowing dates on *Bt*-Strains

Four advanced genotypes i.e.CIM-515, CIM-632, Cyto-313and CIM-343 with one standard CIM-602 were tested at six different sowing dates to observe the response to CLCuD with collaboration of Agronomy section of the Institute. The planting was done from 1<sup>st</sup> March till 15<sup>th</sup> May at 15 days interval. Experimental design was split plot (main plots: Sowing time; sub-plot: genotype). Data on CLCuD incidence were recorded fortnightly at day 30 from each planting date during the season. The results are given in **Fig-5.1**.

It is seen from the Fig-5.1 that the disease did not appear on crop planted from  $1^{\text{st}}$  March to  $1^{\text{5th}}$  April with in 60 DAP. The disease incidence remained low up to end of May (1.2 %) and reached maximum level (100 %) on  $15^{\text{th}}$  September in  $1^{\text{st}}$  March planting. Where as in  $15^{\text{th}}$  March planting CLCuD started to appear during the month of August (0.5 %) and then rapidly increase and attained its maximum level (100 %) during the mid of September.


In 1<sup>st</sup> April planting, disease incidence was 8.4 in the mid of June and reached 100% at the mid of September. Whereas in 15<sup>th</sup> April planting disease incidence was 14.2 % at the mid of June, 89.9 % during mid of August and reached 100 % at the mid of September,


In 1<sup>st</sup> May planting incidence started within 60 DAP (end of June) then increased sharply i.e. 93.0 to 100% during mid of August to mid of September whereas in 15<sup>th</sup> May planting disease symptoms appeared 4.2% within 30 days and disease incidence recorded 100% during the month of September (within 65 DAP).


Those crops which were planted earlier showed less disease incidence till July. All the cultivars showed maximum level of incidence when planted during the month of 15<sup>th</sup> March. All the varieties showed minimum level of disease when planted during the month of March to 1<sup>st</sup> April when compared to others which were planted during 15<sup>th</sup> April shows 40% incidence during the end of July and reached up to 100% at the end of the season. Whereas in 1<sup>st</sup> May and 15<sup>th</sup> May planting all the cultivars showing highly susceptibility (89 to 100 %) at the end of August (Fig-5.1).

Averages across planting dates there is no varietal difference in a sowing. All genotypes showed same behavior i.e. performed better in early planting as compare to late planting (Fig-5.3).

Data on incidence and severity were recorded during the end of September from each treatment and computed for disease index. The level of disease index was 64% on the crop planted on 1<sup>st</sup> March to 15<sup>th</sup> March. The disease index increased with the delay in sowing and it reached up to 72.9 and 75.7 % in crop sown on 15<sup>th</sup> April to 15<sup>th</sup> May respectively (Table-5.8). There is no varietal difference in all sowing dates.







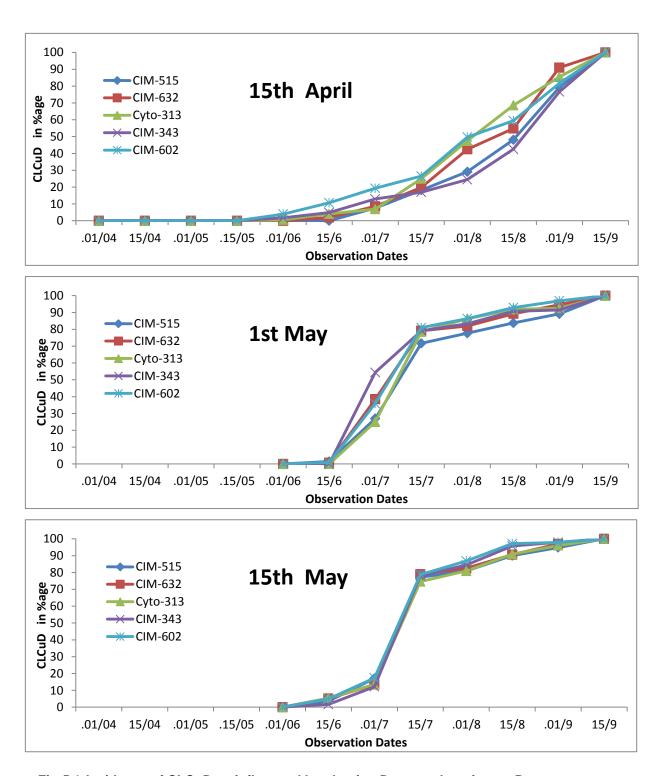



Fig-5.1 Incidence of CLCuD as influenced by planting Dates and strains on Bt-cotton.

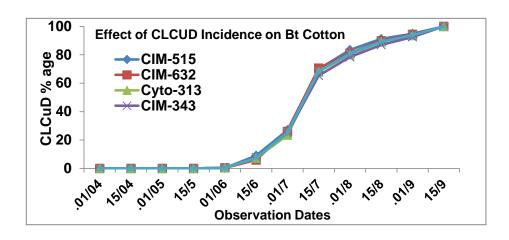



Fig-5.2 Effect of CLCuD Incidence as influenced by planting dates and Bt-strain

Data on incidence and severity were recorded during the end of September from each treatment and computed for disease index. Average across cultivars, the minimum disease index 64.9 and 64.8 % was recorded on crop planting on 1stand 15th March respectively as compare to other planting dates. Average planting dates, minimum disease index level (65.7 %) was recorded on genotype CIM-632 Table-5.8

Table 5.8 Disease index of Cotton Leaf Curl on cultivars planted at different times

| rable of Biocass mask of Cotton Loar Carr of Califrate planted at amoretic times |                       |                        |                       |                        |                     |                      |      |  |  |
|----------------------------------------------------------------------------------|-----------------------|------------------------|-----------------------|------------------------|---------------------|----------------------|------|--|--|
|                                                                                  | Planting Dates        |                        |                       |                        |                     |                      |      |  |  |
|                                                                                  | 1 <sup>st</sup> March | 15 <sup>th</sup> March | 1 <sup>st</sup> April | 15 <sup>th</sup> April | 1 <sup>st</sup> May | 15 <sup>th</sup> May |      |  |  |
| CIM-515                                                                          | 57.2                  | 71.2                   | 73.4                  | 73.0                   | 72.1                | 73.1                 | 70.0 |  |  |
| CIM-632                                                                          | 75.1                  | 34.3                   | 65.8                  | 74.4                   | 70.6                | 74.2                 | 65.7 |  |  |
| Cyto-313                                                                         | 78.6                  | 74.3                   | 76.5                  | 73.7                   | 73.4                | 76.1                 | 75.4 |  |  |
| CIM-343                                                                          | 35.6                  | 68.2                   | 74.0                  | 72.2                   | 72.7                | 75.7                 | 66.4 |  |  |
| CIM-602                                                                          | 77.8                  | 75.7                   | 72.5                  | 71.1                   | 74.7                | 79.7                 | 70.6 |  |  |
| Average                                                                          | 64.9                  | 64.8                   | 72.4                  | 72.9                   | 72.7                | 75.7                 |      |  |  |

D.I = Disease Index, Disease incidence **x** Severity/ maximum severity value (4) CD 5% Sowing Dates = 12.6 Varieties = 4.38

On an average basis of sowing dates, maximum level of fortnightly increase of disease was recorded from end July to end August. Among environmental parameters the maximum temperature range was 34.8~ 37.1°C minimum temperature 28.0 ~ 30.0°C with the relative humidity 75.5%~89.1 % during the above mentioned period. It's indicated that during that period the late sown crop was more affected than earlier (Table-5.9).

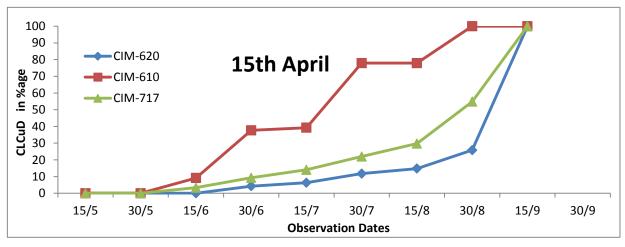
Table.5.9 Relationships between Fortnightly Increase in CLCuD and Temperature and humidity on Bt-Cotton

| and namidaty on Bt obtton |      |      |      |      |      |      |      |      |      |      |      |      |
|---------------------------|------|------|------|------|------|------|------|------|------|------|------|------|
| Sowing                    | 16-  | 1-   | 16-  | 1-   | 16-  | 1-   | 16-  | 1-   | 16-  | 1-   | 16-  | 1-   |
| Date                      | 31/3 | 15/4 | 30/4 | 15/5 | 31/5 | 15/6 | 30/6 | 15/7 | 31/7 | 15/8 | 31/8 | 15/9 |
| 1st March                 |      | 0    | 0    | 0    | 0    | 1.2  | 3.1  | 6.7  | 10.3 | 17.3 | 16.1 | 28.1 |
| 15th March                |      |      | 0    | 0    | 0    | 0.5  | 1.2  | 4.4  | 10.3 | 13.3 | 12.6 | 25.0 |
| 1st April                 |      |      |      | 0    | 0    | 0    | 8.4  | 12.7 | 11.7 | 16.8 | 12.4 | 23.0 |
| 15th April                |      |      |      |      | 0    | 0    | 14.2 | 15.9 | 38.3 | 13.4 | 8.1  | 4.4  |
| 1st May                   |      |      |      |      | 0    | 0    | 0.6  | 35.5 | 41.7 | 5.2  | 6.6  | 3.3  |
| 15th May                  |      |      |      |      |      |      | 0    | 10.5 | 62.8 | 5.6  | 9.8  | 3.9  |
| Average                   |      | 0    | 0    | 0    | 0    | 0.3  | 4.6  | 12.5 | 18.7 | 11.0 | 9.3  | 14.0 |
| Max C                     |      | 31.3 | 34.8 | 39.2 | 39.7 | 39.7 | 37.6 | 38.5 | 36.6 | 37.6 | 34.8 | 35.5 |
| Min C                     |      | 19.4 | 20.1 | 25.5 | 27.6 | 28.8 | 29.3 | 28.3 | 29.8 | 30.2 | 28.5 | 28.3 |
| Difference                |      | 11.8 | 14.7 | 13.7 | 12.1 | 10.9 | 9.2  | 8.3  | 7.8  | 6.9  | 6.3  | 7.2  |
| RH %age                   |      | 70.4 | 58.6 | 55.2 | 71.5 | 66.8 | 73.9 | 86.9 | 83.7 | 75.5 | 81.4 | 89.1 |

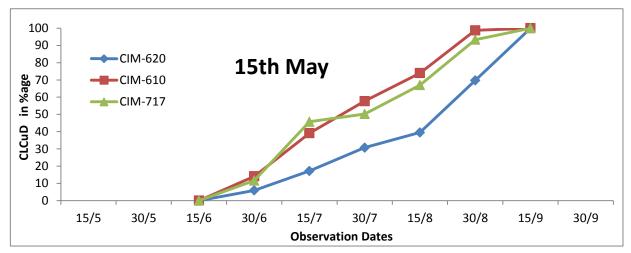
## (b) Effect of Sowing Time on Non Bt. Strains

In the changing climate scenarios establishment of superior germplasm and its acclimatization is the dire need of time. It is hypothized that sowing of newly evolved diverse cotton genotypes at different sowing dates will give best sowing dates of each genotype for management against CLCuD.

Seeds of two elite cotton genotypes i-e CIM-610 and CIM-717 along with one standard variety CIM-620 were sown on five different sowing dates to observe the response to CLCuD with collaboration of Agronomy section of the Institute. The planting was done from 15<sup>th</sup> April to 15<sup>th</sup> June at 15 days interval. Experiment design was split plot (main plots: sowing time: sub plots genotypes). Data on CLCuD incidence were recorded fortnightly at day 30 from each sowing date during the season. Results are given in Fig-5.3.


Effect of appearance of cotton leaf curl disease and its progression different significantly with sowing dates. Minimum CLCuD infestation was observed in 15<sup>th</sup>April Planting in early July data i.e. 17.1%. With the advancement of age the infestation level reached 100 % during the mid of September.


A gradual increase in CLCuD incidence was observed in 1<sup>st</sup> May planting date. The disease started in first week of July with minimum level of incidence of 1.1% which increased moderately and reached to 100% at the mid of September.


Similarly in case of 15<sup>th</sup>May planting CLCuD incidence was 10.5 % in the first week of July and got its maximum level 100 % in the mid of September (135DAP).

In 1<sup>st</sup>June and 15<sup>th</sup>June planting the disease started from mid-July (29.8% and 60.7%) and reached up to 100% respectively at the mid of September.

The level of disease incidence in CIM-620 showed less in 15<sup>th</sup> April and 1<sup>st</sup> May planting as compare to CIM-610 and CIM-717 Average across planting period. comparison among the varieties revealed There is a no varietal difference All varieties showed Maximum CLCuD infestation in earl planting and late planting during the mid of September (Fig-5.3).







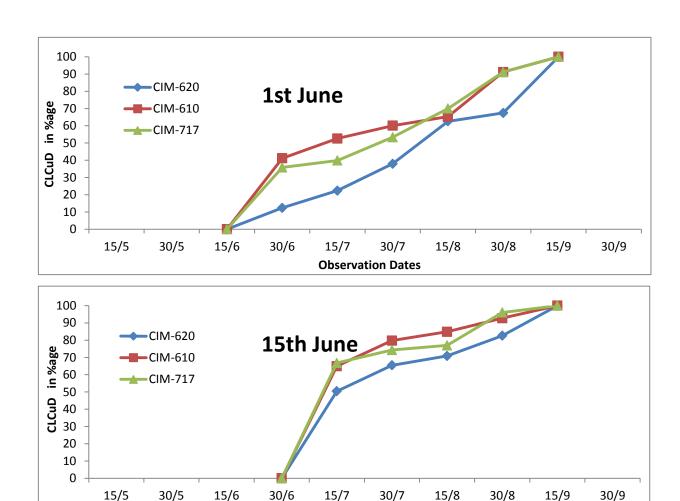



Fig-5.3Effect of CLCuD Incidence as influenced by planting dates and strain

**Observation Dates** 

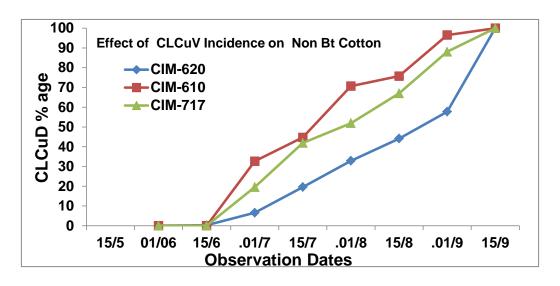



Fig-5.4 Incidence of CLCuD as influenced by planting Dates and strain on Non-Bt-cotton

Data on incidence and severity were recorded during the end of September from each treatment and computed for disease index. Average across cultivars, the minimum disease index 52.3 % was recorded on crop planting on 15<sup>th</sup> April as compare to other planting dates. Average planting dates, minimum disease index level (60.2%) was recorded on genotype CIM-620 Table-5.10

Table-5.10 Disease Index of CLCuD (%) on sowing date trial

|           |                        | Planting Dates      |                      |                      |                       |         |  |  |  |
|-----------|------------------------|---------------------|----------------------|----------------------|-----------------------|---------|--|--|--|
| Cultivars | 15 <sup>th</sup> April | 1 <sup>st</sup> May | 15 <sup>th</sup> May | 1 <sup>st</sup> June | 15 <sup>th</sup> June | Average |  |  |  |
| CIM-620   | 39.0                   | 45.7                | 69.2                 | 72.9                 | 74.4                  | 60.2    |  |  |  |
| CIM-610   | 76.5                   | 53.9                | 78.7                 | 82.2                 | 84.3                  | 75.1    |  |  |  |
| CIM-717   | 63.87                  | 77.7                | 81.8                 | 84.8                 | 83.9                  | 74      |  |  |  |
| Average   | 52.3                   | 59.1                | 76.6                 | 80.0                 | 80.9                  |         |  |  |  |

D.I = Disease Index, Disease incidence x Severity/ maximum severity value (4)
CD 5% Sowing Dates = 8.68 Varieties = 5.44

On an average basis of sowing dates, maximum level of fortnightly increase of CLCuD was recorded from early July to mid of September .Among environmental parameters the maximum temperature range was 34.8~37.1°C minimum temperature 28.0~30.0°C with the relative humidity 75.5 %~89.1 % during the above mentioned period. Difference between maximum and minimum temperature was less and humidity was maximum during the month of August which boost up the disease level. It was also confirmed that late sown crops were more affected than early sown due to plant vigor (Table-5.11).

Table 5.11 Relationship between fortnightly increases in CLCuD with weather parameters during 2017

| parameters during 2017 |        |             |            |             |        |         |        |             |        |
|------------------------|--------|-------------|------------|-------------|--------|---------|--------|-------------|--------|
| Sowing dates           | 1-15/5 | 16-<br>31/5 | 1-<br>15/6 | 16-<br>30/6 | 1-15/7 | 16-31/7 | 1-15/8 | 16-<br>31/8 | 1-15/9 |
| 15 <sup>th</sup> April | 0.0    | 0.0         | 4.2        | 12.9        | 2.8    | 17.4    | 3.6    | 19.4        | 39.8   |
| 1 <sup>st</sup> May    |        | 0.0         | 1.1        | 10.7        | 19.1   | 8.9     | 28.0   | 12.5        | 19.7   |
| 15th May               |        |             | 0.2        | 10.5        | 23.5   | 12.2    | 13.9   | 27.1        | 12.7   |
| 1 <sup>st</sup> June   |        |             |            | 0.0         | 8.5    | 12.2    | 15.5   | 17.3        | 16.8   |
| 15 <sup>th</sup> June  |        |             |            |             | 24.1   | 12.5    | 4.4    | 12.9        | 9.6    |
| Average                | 0.00   | 0.00        | 1.84       | 8.53        | 15.59  | 12.62   | 13.09  | 17.84       | 19.70  |
| Max. °C                | 39.2   | 39.7        | 39.7       | 37.6        | 38.5   | 36.6    | 37.6   | 34.8        | 35.5   |
| Min. °C                | 25.5   | 27.6        | 28.8       | 29.3        | 28.3   | 29.8    | 30.2   | 28.5        | 28.3   |
| Difference             | 13.7   | 12.1        | 10.9       | 9.2         | 8.3    | 7.8     | 6.9    | 6.3         | 7.2    |
| RH%                    | 55.2   | 71.5        | 66.8       | 73.9        | 86.9   | 83.7    | 75.5   | 81.4        | 89.1   |

#### 5.5 Boll Rot of Cotton

### 5.5.1 Sowing Dates Trials

# (a) Effect on Bt-Strains

An experiment was conducted to quantify the occurrence of boll rot disease in different strains planted at different dates during 1<sup>st</sup> March, 15<sup>th</sup> March, 15<sup>th</sup> April, 15<sup>th</sup> April, 1<sup>st</sup> May and 15<sup>th</sup> May. The results are given in Table 5.12

Averaged across the varieties, no significant differences were noted in any crop planted during different timing. However March planting showed more disease was recorded as compared to others. Averaged across sowing dates, the variety CIM-343 showed comparatively more boll rot as compared to others. The boll rot disease ranged from 0.35 to 1.54% in all sowing dates on an average basis (Table 5.12).

#### (b) Effect on Non-Bt-Strains

Another experiment (non *Bt* varieties) was conducted to quantify the boll rot disease in different strains planted during 15<sup>th</sup> April to 15<sup>th</sup> June with fortnightly interval. The boll rot disease was recorded and results are given in Table 5.13.

Averaged across sowing dates, cultivar CIM-602 showed maximum boll rot disease incidence.as compare to other cultivars. On an average basis, the crop planted during 15<sup>th</sup> May was less affected by boll rot as compared to other planting times. On an average basis, boll rot disease ranged from 0.31 to 0.96% in different sowing dates (Table-5.13).

Table-5.12 Effect of Boll Rot of Cotton Disease (%) on cultivars planted at different times

| different times |                           |                           |                          |                           |                        |                         |         |  |
|-----------------|---------------------------|---------------------------|--------------------------|---------------------------|------------------------|-------------------------|---------|--|
| Cultivars       | 1 <sup>st</sup><br>March* | 15 <sup>th</sup><br>March | 1 <sup>st</sup><br>April | 15 <sup>th</sup><br>April | 1 <sup>st</sup><br>May | 15 <sup>th</sup><br>May | Average |  |
| CIM-515         | 1.20                      | 0.54                      | 0.56                     | 1.20                      | 0.29                   | 0.24                    | 0.67    |  |
| CIM-632         | 0.45                      | 0.44                      | 0.48                     | 0.55                      | 0.26                   | 0.63                    | 0.47    |  |
| Cyto-313        | 1.60                      | 1.08                      | 0.87                     | 0.56                      | 0.34                   | 0.27                    | 0.79    |  |
| CIM-343         | 3.48                      | 1.47                      | 1.00                     | 1.80                      | 0.57                   | 0.30                    | 1.44    |  |
| CIM-602         | 0.98                      | 0.57                      | 0.83                     | 0.83                      | 0.32                   | 0.29                    | 0.64    |  |
| Average         | 1.54                      | 0.82                      | 0.75                     | 0.99                      | 0.36                   | 0.35                    | 0.80    |  |

Table-5.13 Effect of Boll Rot of Cotton Disease (%) on cultivars planted at different times

| Cultivars | 15 <sup>th</sup> <b>Apri</b> l* | 1 <sup>st</sup> May | 15 <sup>th</sup> May | 1 <sup>st</sup> June | 15 <sup>th</sup> June | Average |
|-----------|---------------------------------|---------------------|----------------------|----------------------|-----------------------|---------|
| CIM-620   | 1.02                            | 1.33                | 0.67                 | 1.54                 | 0.71                  | 1.05    |
| CIM-610   | 1.61                            | 0.83                | 0.26                 | 0.42                 | 0.79                  | 0.78    |
| CIM-717   | 0.00                            | 0.74                | 0.00                 | 0.41                 | 0.41                  | 0.31    |
| Average   | 0.88                            | 0.96                | 0.31                 | 0.79                 | 0.64                  |         |

#### 5.6 Wilt of Cotton

Wilt Symptoms are noticed in some fields wilt disease was observed in fields at CCRI during the month of August and November. The sudden death of affected plants occurred after appearance of syndrome. Upon examination, the pith wood, bark of lower part of stem was discolored. However, in some samples, the xylem vessels turned black and dried. This phenomenon was recorded in most of the cotton wilted plants Identified causal organism was Botryodiplodia and fusarium spp Trifloxystrobin ,Azo-oxystrobin Carbendazim+ Mencozib fungicide @ 2.8gm/lit affected against identified fungi in vivo.

\_\_\_\_\_\_

#### 6. PLANT PHYSIOLOGY /CHEMISTRY SECTION

Studies were carried out on plant nutrition, seed physiology, plant-water relationships and thermal stress.

#### 6.1 Plant nutrition

#### 6.1.1 Cotton response to Magnesium application by fertigation and foliar methods

Balanced crop nutrition management is a primitive step to sustain cotton production. Apart from nitrogen, phosphorus and potassium, magnesium (Mg), a secondary macronutrient, is essentially required by all crop plants for optimum performance. Magnesium plays important role in soil by production of enzymes required to maintain soil nutrient balance. Many essential plant functions which require adequate Mg supplies include root formation, chlorophyll formation, protein synthesis, photosynthesis, partitioning and utilization of photo-assimilates. Intensive cropping without nutrient replenishment has deteriorated soil health and fertility through continuous mining leading to multiple nutrient deficiencies. The deficiency of magnesium results in yellowing in the form of interveinal chlorosis of older leaves, impairment to plant growth and yield reduction through adversely affecting critical physiological and biochemical processes in plants. Magnesium nutrient is rarely added to cotton crop as a sole fertilizer source. Therefore, the present study was proposed to evaluate the response of cotton crop to different levels of applied magnesium through foliar and fertigation methods.

The crop was sown on 5<sup>th</sup> of May 2017 in a Randomized Complete Block Design with Split Plot arrangement. Magnesium sulphate for Mg source was applied either through foliar @ 0, 3, 6 kg ha<sup>-1</sup> or by fertigation @ 0, 10, 20 kg ha<sup>-1</sup>. Cotton genotypes CIM-616 (Bt) and CIM-554 (non-Bt) were used as test crop. The NPK fertilizers were applied according to recommended fertilizer doses. Standard production and management practices were adopted.

Pre-plant composite soil samples were collected from the plough layer of experimental field before imposition of treatments. Physical and chemical characteristics of the soil were determined. The results indicated that the soil is silt loam in texture and alkaline in reaction. The soil is medium in organic matter, extractable phosphorus, extractable potassium and available magnesium (Table 6.1).

Table 6.1 Physical and chemical characteristics of soil at pre- planting

|                                              | i de la compresión de l |
|----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Characteristics                              | Values                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| рН                                           | 8.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ECe (dSm <sup>-1</sup> )                     | 2.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Organic matter (%)                           | 0.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| NaHCO <sub>3</sub> -P (mg kg <sup>-1</sup> ) | 10.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| NH₄OAc-K (mg kg <sup>-1</sup> )              | 106                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Available Mg (mg kg <sup>-1</sup> )          | 48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Textural class                               | silt loam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

Data on plant structure and development were recorded at maturity. A comparison of both application methods revealed that the main stem height and internodal length remained higher in plots where Mg was applied through fertigation while the number of nodes on main stem did not vary among the application methods (Table 6.2). The main stem height, on average basis, varied from 117.2 to 126.9 cm in foliar application and 118.8 to 132.8 cm in fertigation method. Among different treatments. A positive response of both cotton genotypes was observed to applied Mg doses showing concurrent increase in main stem height and number of nodes on main stem with the increase in quantity of Mg fertilizer. Among both genotypes, CIM-554 produced greater height, more number of nodes on main stem and larger inter-nodal length than CIM-616, irrespective of Mg application methods.

Table 6.2 Effect of applied magnesium sulfate on plant structure development at maturity in two cotton genotypes

| Foliar applied (MgSO <sub>4</sub> kg ha <sup>-1</sup> ) | CIM-616 | CIM-554 | Average | Fertigated<br>(MgSO <sub>4</sub> kg ha <sup>-1</sup> ) | CIM-616 | CIM-554 | Average |
|---------------------------------------------------------|---------|---------|---------|--------------------------------------------------------|---------|---------|---------|
|                                                         |         |         | N       | lain stem height (                                     | cm)     |         |         |
| Control                                                 | 106.5   | 127.8   | 117.2   | Control                                                | 108.6   | 129.0   | 118.8   |
| 3.0                                                     | 112.5   | 135.7   | 124.1   | 10                                                     | 118.3   | 140.7   | 129.5   |
| 6.0                                                     | 114.8   | 139.0   | 126.9   | 20                                                     | 123.0   | 142.5   | 132.8   |
| Average                                                 | 111.3   | 134.2   |         | Average                                                | 116.6   | 137.4   |         |
|                                                         |         |         |         | Nodes on main ste                                      | em      |         |         |
| Control                                                 | 41      | 42      | 42      | Control                                                | 40      | 43      | 42      |
| 3.0                                                     | 44      | 46      | 45      | 10                                                     | 43      | 47      | 45      |
| 6.0                                                     | 45      | 48      | 47      | 20                                                     | 45      | 49      | 47      |
| Average                                                 | 43      | 45      |         | Average                                                | 43      | 46      |         |
|                                                         |         |         |         | Inter-nodal lengt                                      | h       |         |         |
| Control                                                 | 2.60    | 3.04    | 2.82    | Control                                                | 2.72    | 3.00    | 2.86    |
| 3.0                                                     | 2.56    | 2.95    | 2.75    | 10                                                     | 2.75    | 2.99    | 2.87    |
| 6.0                                                     | 2.55    | 2.90    | 2.72    | 20                                                     | 2.73    | 2.91    | 2.82    |
| Average                                                 | 2.57    | 2.96    |         | Average                                                | 2.73    | 2.97    |         |

Plants from one-meter square area were harvested at maturity and partitioned into leaf, stalk and fruit portions. The dry matter yield of leaf, stalk and fruit organs increased with the increasing dose of Mg fertilizer both in foliar and fertigation methods. Total dry matter yield remained higher in CIM-616 as compared with CIM-554 that varied from 880 gm<sup>-2</sup> to 948g m<sup>-2</sup> in different treatments with an average value of 919 gm<sup>-2</sup> as compared to 863 gm<sup>-2</sup> to 938 gm<sup>-2</sup> in CIM-554 in different treatments with an average value of 906 gm<sup>-2</sup> in plots where Mg was applied through foliar method (Table 6.3).

Table No.6.3 Effect of applied magnesium sulfate on dry matter production at maturity in two cotton genotypes

| maturity in two cotton genotypes                        |         |                            |         |                                                     |         |         |         |  |  |
|---------------------------------------------------------|---------|----------------------------|---------|-----------------------------------------------------|---------|---------|---------|--|--|
| Foliar applied (MgSO <sub>4</sub> kg ha <sup>-1</sup> ) | CIM-616 | CIM-554                    | Average | Fertigated (MgSO <sub>4</sub> kg ha <sup>-1</sup> ) | CIM-616 | CIM-554 | Average |  |  |
|                                                         |         | Leaves (gm <sup>-2</sup> ) |         |                                                     |         |         |         |  |  |
| Control                                                 | 147     | 122                        | 135     | Control                                             | 152     | 127     | 140     |  |  |
| 3.0                                                     | 160     | 134                        | 147     | 10                                                  | 167     | 141     | 154     |  |  |
| 6.0                                                     | 165     | 138                        | 152     | 20                                                  | 170     | 146     | 158     |  |  |
| Average                                                 | 158     | 131                        |         | Average                                             | 163     | 138     |         |  |  |
|                                                         |         | Stalk (gm <sup>-2</sup> )  |         |                                                     |         |         |         |  |  |
| Control                                                 | 236     | 245                        | 241     | Control                                             | 232     | 241     | 237     |  |  |
| 3.0                                                     | 251     | 259                        | 255     | 10                                                  | 253     | 257     | 255     |  |  |
| 6.0                                                     | 257     | 264                        | 261     | 20                                                  | 257     | 267     | 262     |  |  |
| Average                                                 | 248     | 256                        |         | Average                                             | 247     | 255     |         |  |  |
|                                                         |         |                            |         | Fruit (gm <sup>-2</sup> )                           |         |         |         |  |  |
| Control                                                 | 501     | 486                        | 493     | Control                                             | 489     | 464     | 477     |  |  |
| 3.0                                                     | 529     | 516                        | 522     | 10                                                  | 521     | 507     | 514     |  |  |
| 6.0                                                     | 540     | 528                        | 534     | 20                                                  | 535     | 513     | 524     |  |  |
| Average                                                 | 523     | 510                        |         | Average                                             | 515     | 495     |         |  |  |
|                                                         |         |                            |         | Total (gm <sup>-2</sup> )                           |         |         |         |  |  |
| Control                                                 | 880     | 863                        | 871     | Control                                             | 862     | 840     | 851     |  |  |
| 3.0                                                     | 929     | 916                        | 923     | 10                                                  | 922     | 915     | 918     |  |  |
| 6.0                                                     | 948     | 938                        | 943     | 20                                                  | 954     | 928     | 941     |  |  |
| Average                                                 | 919     | 906                        |         | Average                                             | 913     | 894     |         |  |  |

The uptake of Mg by cotton plant organs were determined from the oven dried plant material. Data revealed that Mg uptake in leaf samples varied from 1.52 to 1.95 kg ha<sup>-1</sup> with average value of 1.75 kg ha<sup>-1</sup> in Bt.CIM-616 and 1.50 to 1.86 kg ha<sup>-1</sup> with average value of 1.69 kg ha<sup>-1</sup> in CIM-554 in plots with magnesium sulfate applied through foliar method. The corresponding Mg uptake values under fertigated plots were relatively lower which ranged from 1.50 to 1.88 kg ha<sup>-1</sup> with average value of 1.70 kg ha<sup>-1</sup> in

Bt.CIM-616 and from 1.49 to 1.82 kg ha<sup>-1</sup> with average value of 1.66 kg ha<sup>-1</sup> in CIM-554. The trend of Mg uptake was similar in stalk and fruit portions of plants. The Mg uptake by cotton plant increased with the increasing dose of applied Mg. The maximum Mg uptake was observed in fruit portion. The Mg uptake followed the order fruit > leaves > stalk. The maximum total uptake of Mg 9.05 kg ha<sup>-1</sup> was observed in Bt.CIM-616 with 6.0 kg magnesium sulfate dose applied through foliar method (Table 6.4).

Table 6.4 Effect of foliar applied and fertigated magnesium sulfate on Mg

untake by Bt CIM-616 and CIM-554

| uptake by Bt.Civi-616 and Civi-554                      |         |         |         |                                                     |                 |         |         |  |
|---------------------------------------------------------|---------|---------|---------|-----------------------------------------------------|-----------------|---------|---------|--|
| Foliar applied (MgSO <sub>4</sub> kg ha <sup>-1</sup> ) | CIM-616 | CIM-554 | Average | Fertigated (MgSO <sub>4</sub> kg ha <sup>-1</sup> ) | CIM-616         | CIM-554 | Average |  |
|                                                         |         |         |         | Leaves (kg ha                                       | <sup>-1</sup> ) |         |         |  |
| Control                                                 | 1.52    | 1.50    | 1.51    | Control                                             | 1.50            | 1.49    | 1.50    |  |
| 3.0                                                     | 1.77    | 1.72    | 1.75    | 10                                                  | 1.71            | 1.66    | 1.69    |  |
| 6.0                                                     | 1.95    | 1.86    | 1.91    | 20                                                  | 1.88            | 1.82    | 1.85    |  |
| Average                                                 | 1.75    | 1.69    |         | Average                                             | 1.70            | 1.66    |         |  |
|                                                         |         |         |         | Stalk (kg ha <sup>-1</sup>                          | )               |         |         |  |
| Control                                                 | 1.38    | 1.35    | 1.37    | Control                                             | 1.37            | 1.35    | 1.36    |  |
| 3.0                                                     | 1.44    | 1.40    | 1.42    | 10                                                  | 1.42            | 1.38    | 1.40    |  |
| 6.0                                                     | 1.49    | 1.44    | 1.47    | 20                                                  | 1.46            | 1.40    | 1.43    |  |
| Average                                                 | 1.44    | 1.40    |         | Average                                             | 1.42            | 1.38    |         |  |
|                                                         |         |         |         | Fruit (kg ha <sup>-1</sup>                          | )               |         |         |  |
| Control                                                 | 5.21    | 5.11    | 5.16    | Control                                             | 5.20            | 5.11    | 5.16    |  |
| 3.0                                                     | 5.45    | 5.37    | 5.41    | 10                                                  | 5.32            | 5.30    | 5.31    |  |
| 6.0                                                     | 5.60    | 5.48    | 5.55    | 20                                                  | 5.43            | 5.40    | 5.42    |  |
| Average                                                 | 5.42    | 5.32    |         | Average                                             | 5.32            | 5.27    |         |  |
|                                                         |         |         |         | Total (kg ha <sup>-1</sup>                          | )               |         |         |  |
| Control                                                 | 8.11    | 7.96    | 8.04    | Control                                             | 8.07            | 7.95    | 8.01    |  |
| 3.0                                                     | 8.66    | 8.49    | 8.58    | 10                                                  | 8.45            | 8.34    | 8.40    |  |
| 6.0                                                     | 9.05    | 8.79    | 8.92    | 20                                                  | 8.77            | 8.62    | 8.70    |  |
| Average                                                 | 8.61    | 8.41    |         | Average                                             | 8.43            | 8.30    |         |  |

Seed cotton yield, number of bolls per plant and boll weight varied among different Mg doses, cotton genotypes and the application methods. Seed cotton yield and its components increased with the concurrent increase in Mg doses. The maximum seed cotton yield was observed with higher dose of Mg both in foliar applied and fertigated methods. A comparison of the Mg application methods revealed that seed cotton yield did not vary greatly among the both methods. The plots with foliar applied Mg produced slightly higher yield in the range of 2475 to 3040 kg ha<sup>-1</sup> seed cotton, 25 to 29 bolls per plant and 2.63 to 2.87g boll weight as compared to Mg fertigated plots where the yield ranged from 2466 to 2960 kg ha<sup>-1</sup>, bolls per plant from 25 to 28 and boll weight from 2.60 to 2.81q, irrespective of cotton genotypes (Table 6.5). Chlorophyll SPAD values did not vary greatly with the Mg doses, cotton genotypes and application methods. The chlorophyll SPAD values varied from 42.0 to 49.7 in foliar applied Mg and from 41.7 to 48.7 in Mg fertigated methods (Table 6.6)

Table No. 6.5 Effect of applied magnesium through foliar and fertigation methods on cotton productivity two cotton genotypes

| MgSO <sub>4</sub>      | Foli        | ar applica | tion       | MgSO <sub>4</sub>      |                   | Fertigation | 1       |
|------------------------|-------------|------------|------------|------------------------|-------------------|-------------|---------|
| (kg ha <sup>-1</sup> ) | CIM-616     | CIM-554    | Average    | (kg ha <sup>-1</sup> ) | CIM-616           | CIM-554     | Average |
|                        |             | S          | eed cotton | yield (kg ha           | a <sup>-1</sup> ) |             |         |
| Control                | 2530        | 2420       | 2475       | Control                | 2518              | 2413        | 2466    |
| 3.0                    | 2920        | 2790       | 2855       | 10                     | 2879              | 2740        | 2810    |
| 6.0                    | 3084        | 2995       | 3040       | 20                     | 3000              | 2920        | 2960    |
| Average                | 2845        | 2735       |            | Average                | 2799              | 2691        |         |
|                        | Application | n dose     | 113**      |                        |                   |             | 127**   |
| LSD                    | Genotype    | )          | 158**      |                        |                   |             | 103**   |
|                        | Interactio  | n          | ns         |                        |                   |             | ns      |
|                        |             |            | No of bol  | ls per plant           |                   |             |         |
| Control                | 22          | 27         | 25         | Control                | 22                | 27          | 25      |
| 3.0                    | 25          | 30         | 28         | 10                     | 25                | 29          | 27      |
| 6.0                    | 26          | 31         | 29         | 20                     | 26                | 30          | 28      |
| Average                | 24          | 29         |            | Average                | 24                | 29          |         |
|                        | Application | n dose     | 1.08*      |                        |                   |             | 1.10*   |
| LSD                    | Genotype    | )          | 1.36**     |                        |                   |             | 1.29**  |
|                        | Interactio  | n          | ns         |                        |                   |             | ns      |
|                        |             |            | Boll we    | eight (g)              |                   |             |         |
| Control                | 2.94        | 2.31       | 2.63       | Control                | 2.93              | 2.27        | 2.60    |
| 3.0                    | 3.12        | 2.37       | 2.75       | 10                     | 3.10              | 2.30        | 2.70    |
| 6.0                    | 3.18        | 2.55       | 2.87       | 20                     | 3.13              | 2.49        | 2.81    |
| Average                | 3.08        | 2.41       |            | Average                | 3.05              | 2.35        |         |
|                        | Application | n dose     | ns         | •                      | •                 |             | ns      |
| LSD                    | Genotype    | es         | 0.49*      |                        |                   |             | 0.51*   |
|                        | Interactio  | n          | ns         |                        |                   |             | ns      |

Table 6.6 Chlorophyll content (SPAD values) in response to applied magnesium through foliar and fertigation methods

| Foliar<br>application<br>(MgSO <sub>4</sub> kg ha <sup>-1</sup> ) | CIM-616 | CIM-554 | Average | Fertigation<br>(MgSO <sub>4</sub> kg ha <sup>-1</sup> ) | CIM-616 | CIM-554 | Average |
|-------------------------------------------------------------------|---------|---------|---------|---------------------------------------------------------|---------|---------|---------|
| Control                                                           | 40.6    | 43.4    | 42.0    | Control                                                 | 40.4    | 43.0    | 41.7    |
| 3.0                                                               | 45.5    | 48.9    | 47.2    | 10                                                      | 44.9    | 46.8    | 45.9    |
| 6.0                                                               | 48.9    | 50.4    | 49.7    | 20                                                      | 47.8    | 49.5    | 48.7    |
| Average                                                           | 45.0    | 47.6    |         | Average                                                 | 44.4    | 46.4    |         |

#### 6.2 Seed physiology

# 6.2.1 Optimizing the dose and efficacy of proline in conjunction with or without boron and zinc micronutrients

Agricultural production is adversely affected by biotic and abiotic stresses worldwide. Abiotic stresses (drought and heat) are the major causes of decline in agricultural production. Under stress conditions the exogenous application of proline may also contribute to the detoxification of the active oxygen species. The proposed role of proline is as osmoregulator and it contributes in the maintenance of membrane integrity as an adaptation to conditions of any stress. Proline helps in fertility of pollen, in enhancing the biomass production, net photosynthetic rate, stomatal conductance, internal  $CO_2$  concentration, nutrient uptake in roots and shoots under water deficit conditions, enhanced plant transpiration rate and reduce the inhibitory effects of NaCl on seed germination. Therefore, overall outcome is the plant growth, yield and superior seed germination.

Boron (B) is one of the important essential mineral elements. Application of boron regulates several vital physiological processes including cell division and elongation, carbohydrate metabolism, assimilate translocation and cell wall development.

Boron also plays a key role in pollen germination, pollen tube growth, floret fertility and boll development.

Zinc (Zn) is involved in several enzymes driven metabolic processes in plants, such as protein synthesis, membrane integrity and tryptophan biosynthesis, photosynthate mobilization, uptake and metabolism of nitrogen (N), phosphorus (P), and potassium (K).

The aim of this investigation was to study the response of cotton to seed priming with proline alone or in combination with its foliar sprays with and without added boron and zinc on yield and quality parameters of cotton seed. Seed priming with 0.1% proline was done prior to sowing and foliar sprays were started when the crop reached fruiting phase i.e. 35-40 days old. Subsequent foliar sprays were done after 15 days' intervals. The detail of treatments applied is given below:

| Proline levels (%) | Foliar application                                                   |
|--------------------|----------------------------------------------------------------------|
| T1(Control)        | Foliar spray of water alone Foliar spray of B & Zn                   |
| T2 (0.05)          | Foliar spray of proline alone Foliar application of proline + B & Zn |
| T3 (0.10)          | Foliar spray of proline alone Foliar application proline + B &Zn     |
| T4 (0.15)          | Foliar spray of proline alone Foliar application of proline + B &Zn  |
| T5 (0.20)          | Foliar spray of proline alone Foliar application of proline + B &Zn  |

Data on plant structure development in different treatments was recorded at maturity. The results indicated that main stem height, nodes on main stem and internodal length varied among different treatments. Main stem height varied from 112 to 135 cm, number of nodes on main stem from 42 to 48 and inter-nodal length from 2.57 to 2.93 cm in different treatments. The maximum height and number of nodes on main stem were observed in treatment that received foliar application of 0.1% proline along with B & Zn (Table 6.7).

The seed cotton yield varied from 2580 to 3104 kg ha<sup>-1</sup> in different treatments. The maximum seed cotton yield was observed in treatment that received foliar applications of 0.1% proline with B & Zn. However, on overall average basis seed cotton yield did not differ significantly among the treatments with or without foliar spray of B and Zn. The main effects of proline levels revealed significant increase in seed cotton yield over control at applied levels of proline viz. 0.10% (T3), 0.15% (T4) and 0.20% (T5). The proline levels 0.10%, 0.15% and 0.20% did not differ significantly among themselves in terms of seed cotton production. The ginning outturn varied from 38.2 to 44.8% in different treatments (Table 6.8).

The assessment of seed quality parameters was done from the mature seed. Results indicated that seed priming alone or in combination with foliar sprays of 0.1% proline with and without B & Zn improved parameters such as seed germination, seed index, oil and crude protein content and maintained free fatty acids within safe limits. Seed germination varied from 41- 73%, seed index from 5.4 – 7.0g, oil content from 14.1 to 22.3 % and crude protein from 19.6 to 27.4 % in different treatments (Table 6.9).

Table 6.7 Effect of seed priming plus foliar spray of proline with and without micronutrients on vegetative and reproductive of cotton plant at maturity

| Due line     | Thicronuments on vegetative and repr   |             |           |             |
|--------------|----------------------------------------|-------------|-----------|-------------|
| Proline      | Foliar application                     | Main stem   | Nodes on  | Inter-nodal |
| levels (%)   |                                        | height (cm) | main stem | length (cm) |
| T1(Control)  | Foliar spray of water alone            | 113         | 44        | 2.57        |
| 1 1(Control) | Foliar spray of B & Zn                 | 112         | 42        | 2.67        |
| T2 (0.05)    | Foliar spray of proline alone          | 118         | 43        | 2.74        |
| 12 (0.03)    | Foliar application of proline + B & Zn | 122         | 43        | 2.84        |
| T3 (0.10)    | Foliar spray of proline alone          | 129         | 47        | 2.74        |
| 13 (0.10)    | Foliar application proline + B &Zn     | 135         | 48        | 2.81        |
| T4 (0.15)    | Foliar spray of proline alone          | 128         | 45        | 2.84        |
| T4 (0.15)    | Foliar application of proline + B &Zn  | 129         | 45        | 2.87        |
| T5 (0.20)    | Foliar spray of proline alone          | 126         | 43        | 2.93        |
| 15 (0.20)    | Foliar application of proline + B &Zn  | 129         | 45        | 2.84        |
|              | B & Zn effects                         |             |           |             |
|              | Foliar spray without B & Zn            | 123         | 44.4      | 2.76        |
|              | Foliar spray with B & Zn               | 125         | 44.6      | 2.84        |
|              | Proline levels                         |             |           |             |
|              | Control                                | 113         | 43        | 2.63        |
|              | 0.05                                   | 120         | 43        | 2.79        |
|              | 0.10                                   | 132         | 48        | 2.75        |
|              | 0.15                                   | 129         | 45        | 2.87        |
|              | 0.20                                   | 128         | 44        | 2.91        |
|              | Proline levels                         | 6.39**      | 1.95**    | ns          |
| LSD          | Spray vs non-spray of B & Zn           | ns          | ns        | ns          |
|              | Interaction                            | ns          | ns        | ns          |

<sup>\*\*</sup>significant at p<0.01 ns = non-significant

Table 6.8 Effect of seed priming plus foliar spray of proline with and without micronutrients on seed cotton yield at 150 DAP

| Proline levels (%) | Foliar application                     | seed cotton<br>yield(kg ha <sup>-1</sup> ) | GOT%   |
|--------------------|----------------------------------------|--------------------------------------------|--------|
| T1(Control)        | Foliar spray of water alone            | 2580                                       | 44.8   |
| i i(Control)       | Foliar spray of B & Zn                 | 2627                                       | 41.3   |
| T2 (0.05)          | Foliar spray of proline alone          | 2667                                       | 43.9   |
| 12 (0.05)          | Foliar application of proline + B & Zn | 2726                                       | 42.7   |
| T2 (0.10)          | Foliar spray of proline alone          | 2932                                       | 42.6   |
| T3 (0.10)          | Foliar application proline + B &Zn     | 3104                                       | 41.1   |
| T4 (0.45)          | Foliar spray of proline alone          | 2939                                       | 40.7   |
| T4 (0.15)          | Foliar application of proline + B &Zn  | 3091                                       | 42.1   |
| TE (0.00)          | Foliar spray of proline alone          | 2912                                       | 44.8   |
| T5 (0.20)          | Foliar application of proline + B &Zn  | 3085                                       | 38.2   |
|                    | B & Zn effects                         |                                            |        |
|                    | Foliar spray without B & Zn            | 2806                                       | 43.3   |
|                    | Foliar spray with B & Zn               | 2927                                       | 41.1   |
|                    | Proline levels                         |                                            |        |
|                    | Control                                | 2604                                       | 43.1   |
|                    | 0.05                                   | 2696                                       | 43.3   |
|                    | 0.10                                   | 3018                                       | 41.9   |
|                    | 0.15                                   | 3015                                       | 41.4   |
|                    | 0.20                                   | 2998                                       | 41.5   |
|                    | Proline levels                         | 379.4**                                    | 1.18** |
| LSD                | Spray vs non-spray of B & Zn           | ns                                         | 0.63** |
|                    | Interaction                            | ns                                         | 1.39** |

<sup>\*\*</sup>significant at p<0.01 ns = non-significant

Table 6.9 Effect of seed priming plus foliar spray of proline with and without micronutrients on seed quality parameters in different treatments

| Proline<br>levels<br>(%) | Foliar application                     | рH   | EC<br>(µS cm <sup>-1</sup> ) | Na<br>(%) | K (%)  | Seed index (g) | Germi-<br>nation<br>(%) | Oil<br>(%) | Free fatty acid (%) | Crude<br>protein<br>(%) |
|--------------------------|----------------------------------------|------|------------------------------|-----------|--------|----------------|-------------------------|------------|---------------------|-------------------------|
| T1(Control)              | Foliar spray of water alone            | 5.9  | 93                           | 0.60      | 1.24   | 5.4            | 41                      | 14.1       | 0.94                | 19.6                    |
| i i(Contiol)             | Foliar spray of B & Zn                 | 5.9  | 83                           | 0.50      | 1.16   | 5.9            | 45                      | 16.3       | 0.87                | 23.8                    |
| T2 (0.05)                | Foliar spray of proline alone          | 6.0  | 103                          | 0.62      | 1.29   | 5.6            | 47                      | 15.1       | 0.82                | 21.7                    |
| 12 (0.03)                | Foliar application of proline + B & Zn | 5.9  | 100                          | 0.55      | 1.18   | 6.0            | 52                      | 17.7       | 0.81                | 24.6                    |
| T3 (0.10)                | Foliar spray of proline alone          | 6.2  | 108                          | 0.71      | 0.92   | 6.3            | 66                      | 18.5       | 0.53                | 23.4                    |
| 13 (0.10)                | Foliar application proline + B &Zn     | 6.1  | 122                          | 0.61      | 0.87   | 7.0            | 73                      | 22.3       | 0.47                | 27.4                    |
| T4 (0.1E)                | Foliar spray of proline alone          | 6.1  | 95                           | 0.55      | 1.14   | 6.2            | 64                      | 17.2       | 0.66                | 24.7                    |
| T4 (0.15)                | Foliar application of proline + B &Zn  | 6.1  | 104                          | 0.45      | 1.09   | 6.6            | 68                      | 21.0       | 0.62                | 26.7                    |
| TE (0.00)                | Foliar spray of proline alone          | 6.1  | 94                           | 0.45      | 1.05   | 5.9            | 54                      | 16.6       | 0.70                | 22.8                    |
| T5 (0.20)                | Foliar application of proline + B &Zn  | 6.1  | 92                           | 0.35      | 0.98   | 6.2            | 55                      | 19.3       | 0.68                | 23.2                    |
|                          | B & Zn effects                         |      |                              |           |        |                |                         |            |                     |                         |
|                          | Foliar spray without B & Zn            | 6.07 | 99                           | 0.59      | 1.12   | 5.9            | 54                      | 16.1       | 0.73                | 22.4                    |
|                          | Foliar spray with B & Zn               | 6.00 | 100                          | 0.49      | 1.07   | 6.4            | 59                      | 19.3       | 0.69                | 24.9                    |
|                          | Proline levels                         |      |                              |           |        |                |                         |            |                     |                         |
|                          | Control                                | 5.9  | 88                           | 0.55      | 1.20   | 5.7            | 43                      | 15.2       | 0.90                | 21.7                    |
|                          | 0.05                                   | 6.0  | 102                          | 0.59      | 1.23   | 5.8            | 50                      | 16.4       | 0.81                | 23.7                    |
| 0.10                     |                                        | 6.2  | 115                          | 0.66      | 0.90   | 6.6            | 70                      | 20.4       | 0.50                | 24.9                    |
| 0.15                     |                                        | 6.1  | 100                          | 0.50      | 1.11   | 6.4            | 66                      | 19.1       | 0.64                | 24.7                    |
|                          | 0.20                                   | 6.1  | 93                           | 0.40      | 1.02   | 6.1            | 55                      | 17.9       | 0.69                | 23.5                    |
|                          | Proline levels                         | ns   | 13.54*                       | ns        | 0.06** | 0.25**         | 11.2**                  | 0.64**     | 0.10**              | 1.47**                  |
| LSD                      | Spray vs non-spray of B & Zn           | ns   | ns                           | ns        | 0.05** | 0.17**         | 4.67**                  | 0.86**     | 0.06*               | 1.15**                  |
|                          | Interaction                            | ns   | ns                           | ns        | 0.07*  | ns             | ns                      | ns         | ns                  | 2.58*                   |

\*\*significant at p<0.01 ns = non-significant

#### 6.3 Soil-Plant-Water Relationships

#### 6.3.1 Screening of advanced genotypes for drought tolerance

Irrigation water resources are squeezing day by day due to intensified agriculture. Non-judicious use of irrigation water for crop production increases cost of production on one hand whereas scarcity of water has adverse effects on crop production. Moreover, higher temperatures during the fruiting phase and irregular rains cause considerable losses in agricultural production. Although cotton plant is genetically xerophyte yet it requires regular supply of irrigation water for optimum production. Shortage of water results in poor plant growth, increased fruit abscission, lower yields and poor fibre quality in cotton. Cotton cultivars differ in acclimation to water stress environment owing to their morphology and genetic make-up. Tall statured and deep rooted genotypes coupled with efficient gas exchange characteristics may suffer less and show better performance under water stress conditions. Screening of advanced genotypes on the basis of physiological parameters of stress tolerance may provide a guideline to policy makers for varietal zoning and also for the breeders to develop varieties which may perform efficiently under water stress conditions.

Therefore, a field experiment was conducted at the experimental area of Central Cotton Research Institute, Multan during the cotton crop season 2017-18. A total of thirty-six cotton genotypes viz. BH-184, BH-201, BH-212, BH-221, BZU-05, CIM-343, CIM-616, CIM-632, CIM-663, CIM-717, CRIS-578, CYTO-313, CYTO-515, DEEBAL, DNH-40, FH-142, BAGHDADI, GH-HADI, HAMMAD, LAALZAR, MUBARIK, NIAB-878, NIAB-1042, NIAB-1048, NIAB-1064, NIAB-1089, NIAB-444, NIAB-545, SLH-19, SLH-33, SLH-377, SLH-378, SLH-381, SLH-6, VH-363 and ZAKRAYIA-01 were evaluated for their performance under normal irrigated viz. -1.6  $\pm$  0.2 MPa leaf water potential  $(\psi_w)$  and water stressed (-2.4  $\pm$  0.2 MPa  $\psi_w$ ) conditions.

The treatments were laid out in RCBD with split-plot arrangement (water stress main plots; genotypes: sub-plots). Crop was sown on April 30, 2017. Water stress was imposed at squaring phase i.e. at 30 days after planting that continued till crop maturity. Leaf water potential was continuously monitored by employing Pressure Chamber Technique. The quantity of irrigation water applied was measured through "Cut Throat Flume" during the season. Total quantity of water applied was 3012 m³ in normal irrigated plots and 2610 m³ in water stressed plots. A total precipitation of 94.8 mm (May-November) was received during the crop season.

Data on plant structure and development were recorded at maturity. Main stem height, nodes on main stem and inter-nodal length varied significantly with water stress treatments and among the genotypes. Main stem height varied from 77 cm to 155 cm, nodes on main stem from 36 to 54 and inter-nodal length from 2.02 to 3.07 cm in different genotypes. Averaged across genotypes, main stem height varied from 96 to 117 cm, nodes on main stem from 40 to 44 and inter-nodal length from 2.43 to 2.67 cm. Imposition of water stress caused a decrease of 18% in main stem height, 9% both in nodes on main stem and inter-nodal length. Averaged across the water stress treatment, main stem height varied from 89 cm to 122 cm, nodes on main stem from 37 to 46 and inter-nodal length from 2.29 cm to 2.93 cm in different genotypes (Table 6.10).

Data on seed cotton yield and its components revealed that seed cotton yield, number of bolls per plant and boll weight varied significantly with water stress and among genotypes. The number of bolls per plant varied from 13 to 35, boll weight from 2.12 to 4.33 g and seed cotton yield varied from 1211 to 3135 kg ha<sup>-1</sup>, in different genotypes, irrespective of water regimes. Seed cotton yield, number of bolls per plant and boll weight decreased with the imposition of water stress. Consequently, seed cotton yield decreased from 2133 to 1759 kg ha<sup>-1</sup>, bolls per plant from 22 to 19 and boll weight from 2.94 to 2.81g irrespective of the genotypes. The decrease, due to water stress, was 17.5% in seed cotton yield, 13.6% in bolls per plant and 4.4% in boll weight. Averaged across the water stress treatments, the seed cotton yield varied from 1263 to 2751 kg ha , bolls per plant from 14 to 30 and boll weight from 2.24 to 4.29g in different genotypes. The genotype CIM-343 produced the maximum seed cotton yield (3135 kg ha<sup>-1</sup>) with 28 bolls per plant and boll weight of 3.15g in normal irrigated plots. The genotype CIM-343 also surpassed in yield over all other genotypes irrespective of water stress treatments. In water stressed plots, although NIAB-878 produced the highest seed cotton yield of 2444 kg ha<sup>1</sup> however, it did not vary statistically from CIM-343. On overall basis, maximum average number of bolls per plant (30) were produced by NIAB-1089 while the maximum average boll weight (4.29g) was produced both by LALAZAR and BZU-05 (Table 6.11). The positive interactions among water stress treatments and genotypes for yield parameters reveal that the genetic variability and their differential response to varied conditions can help in varietal selection for better yield performance and use of identified desirable traits in breeding programs.

The observations regarding gas exchange characteristics like stomatal conductance (C), transpiration rate (*E*) and net photosynthetic rate ( $P_N$ ) varied significantly with water stress and among the genotypes. Averaged across genotypes, C varied from 134 to 179 m mol CO<sub>2</sub> m<sup>-2</sup>s<sup>-1</sup>, *E* from 6.76 to 7.48 m mole H<sub>2</sub>O m<sup>-2</sup>s<sup>-1</sup> and  $P_N$  from 25.9 to 34.5  $\mu$  mol CO<sub>2</sub> m<sup>-2</sup>s<sup>-1</sup>. Imposition of water stress caused 25% decrease in C, 9.6% decrease in *E* and 25% decrease in  $P_N$ . Among the genotypes, C varied from 83 to 230 mmol CO<sub>2</sub> m<sup>-2</sup>s<sup>-1</sup>, *E* from 4.49 to 9.03 m mol H<sub>2</sub>O m<sup>-2</sup>s<sup>-1</sup>,  $P_N$  from 15.2 to 59.2  $\mu$  mol CO<sub>2</sub> m<sup>-2</sup>s<sup>-1</sup>, irrespective of water stress treatments. Averaged across the water stress treatments, the genotype SLH-33 maintained the highest stomatal conductance while BH-221 maintained the highest net photosynthetic rate (Table 6.12). The  $P_N/E$  varied from 2.76 to 6.88  $\mu$  mol CO<sub>2</sub>/ m mole H<sub>2</sub>O in different genotypes and decreased from 4.70 to 3.89  $\mu$  mol CO<sub>2</sub>/ m mole H<sub>2</sub>O with the imposition of water stress (Table 6.13).

Table 6.10 Plant structure development in different cotton genotypes under two water regimes

| Main stem height (cm)   Nodes on main stem   Inter-nodal length (ci |            |                   |            |          |                    | 44h /am) |              |              |              |
|---------------------------------------------------------------------|------------|-------------------|------------|----------|--------------------|----------|--------------|--------------|--------------|
| Variety Name                                                        | No No      | em neign<br>Water | it (Cm)    | Nodes    | Water              |          | No           | Water        | jtn (cm)     |
| variety rame                                                        | stress     | stress            | Mean       | stress   | stress             | Mean     | stress       | stress       | Mean         |
| SLH-377                                                             | 95         | 82                | 89         | 37       | 39                 | 38       | 2.59         | 2.15         | 2.37         |
| BH-184                                                              | 98         | 96                | 97         | 39       | 37                 | 38       | 2.53         | 2.58         | 2.56         |
| BH-212                                                              | 98         | 95                | 97         | 39       | 42                 | 41       | 2.49         | 2.27         | 2.38         |
| DEEBAL                                                              | 101        | 84                | 93         | 38       | 36                 | 37       | 2.64         | 2.32         | 2.48         |
| NIAB-444                                                            | 102        | 103               | 103        | 39       | 39                 | 39       | 2.61         | 2.68         | 2.65         |
| CIM-663                                                             | 102        | 91                | 96         | 41       | 40                 | 40       | 2.48         | 2.30         | 2.39         |
| CRIS-578                                                            | 103        | 96                | 100        | 42       | 39                 | 41       | 2.44         | 2.48         | 2.46         |
| BAGHDADI                                                            | 103        | 102               | 103        | 42       | 38                 | 40       | 2.44         | 2.71         | 2.58         |
| SLH-378                                                             | 105        | 83                | 94         | 43       | 39                 | 41       | 2.44         | 2.14         | 2.29         |
| NIAB-1042                                                           | 109        | 107               | 108        | 47       | 46                 | 46       | 2.34         | 2.34         | 2.34         |
| BH-201                                                              | 109        | 98                | 104        | 40       | 39                 | 40       | 2.70         | 2.51         | 2.61         |
| DNH-40                                                              | 110        | 101               | 106        | 43       | 41                 | 42       | 2.54         | 2.45         | 2.50         |
| ZAKRAYIA-1                                                          | 110        | 82                | 96         | 41       | 38                 | 40       | 2.66         | 2.17         | 2.41         |
| GH-Hadi                                                             | 111        | 97                | 104        | 41       | 42                 | 41       | 2.73         | 2.31         | 2.52         |
| CIM-632                                                             | 111        | 86                | 99         | 42       | 38                 | 40       | 2.63         | 2.25         | 2.44         |
| BH-221                                                              | 113        | 82                | 98         | 45       | 37                 | 41       | 2.50         | 2.23         | 2.36         |
| N-878                                                               | 115        | 100               | 108        | 48       | 42                 | 45       | 2.40         | 2.38         | 2.39         |
| SLH-33                                                              | 116        | 109               | 112        | 41       | 38                 | 39       | 2.85         | 2.87         | 2.86         |
| FH-142                                                              | 116        | 100               | 108        | 50       | 41                 | 46       | 2.31         | 2.43         | 2.37         |
| SLH-19                                                              | 117        | 103               | 110        | 44       | 42                 | 43       | 2.63         | 2.45         | 2.54         |
| NIAB-545                                                            | 117        | 93                | 105        | 43       | 41                 | 42       | 2.71         | 2.28         | 2.49         |
| NIAB-1089                                                           | 118        | 119               | 119        | 48       | 44                 | 46       | 2.47         | 2.72         | 2.59         |
| SLH-381                                                             | 118        | 93                | 106        | 41       | 39                 | 40       | 2.92         | 2.40         | 2.66         |
| CYTO-313                                                            | 123        | 109               | 116        | 40       | 39                 | 40       | 3.07         | 2.80         | 2.93         |
| BZU-5                                                               | 123        | 94                | 108        | 43       | 40                 | 41       | 2.85         | 2.37         | 2.61         |
| NIAB-1048<br>NIAB-1064                                              | 123<br>127 | 89<br>109         | 106<br>118 | 46<br>45 | 39<br>41           | 43<br>43 | 2.70<br>2.79 | 2.26<br>2.71 | 2.48<br>2.75 |
| HAMMAD                                                              | 127        | 90                | 109        | 45<br>45 | 37                 | 43<br>41 | 2.79         | 2.71         | 2.75         |
| CIM-616                                                             | 130        | 108               | 119        | 46       | 43                 | 45       | 2.81         | 2.52         | 2.66         |
| MUBARIK                                                             | 133        | 86                | 109        | 45       | 40                 | 43       | 2.93         | 2.15         | 2.54         |
| CIM-343                                                             | 136        | 102               | 119        | 49       | 39                 | 44       | 2.75         | 2.60         | 2.67         |
| SLH-6                                                               | 137        | 103               | 120        | 49       | 36                 | 43       | 2.80         | 2.87         | 2.84         |
| LAALZAR                                                             | 137        | 77                | 107        | 47       | 38                 | 43       | 2.89         | 2.02         | 2.45         |
| CIM-717                                                             | 138        | 95                | 117        | 48       | 39                 | 43       | 2.91         | 2.47         | 2.69         |
| VH-363                                                              | 139        | 105               | 122        | 47       | 40                 | 44       | 2.95         | 2.60         | 2.78         |
| CYTO-515                                                            | 155        | 79                | 117        | 54       | 38                 | 46       | 2.89         | 2.07         | 2.48         |
| Mean                                                                | 117        | 96                |            | 44       | 40                 |          | 2.67         | 2.43         |              |
| Irrigation level                                                    |            | 287**             |            |          | 3.97**             |          |              | 0.20**       |              |
| LSD Genotypes                                                       |            | 172**             |            |          | 4.02**             |          |              | 0.24**       |              |
| Interaction                                                         |            | 244**             |            |          | 5.68 <sup>ns</sup> |          |              | 0.34*        |              |

No stress =  $(-1.6 \pm 0.2 \text{ MPa } \psi_w)$ Water stress =  $(-2.0 \pm 0.2 \text{ MPa } \psi_w)$  \* Significant at p<0.05 level
\*\*Significant at p<0.01 level
ns = non-significant

Seed cotton production by different genotypes under normal and water stressed irrigation **Table 6.11** 

| stressed irrigation |              |                        |              |                 |              |          |                 |              |              |
|---------------------|--------------|------------------------|--------------|-----------------|--------------|----------|-----------------|--------------|--------------|
|                     | See          | d cotton               | yield        | Bolls per plant |              |          | Boll weight (g) |              |              |
| Variety Name        | 1            | (kg ha <sup>-1</sup> ) |              |                 |              |          |                 |              | (3)          |
|                     | No<br>stress | Water stress           | Mean         | No<br>stress    | Water stress | Mean     | No<br>stress    | Water stress | Mean         |
| CIM-343             | 3135         | 2367                   | 2751         | 28              | 23           | 26       | 3.15            | 2.76         | 2.96         |
| LALAZAR             | 3057         | 2230                   | 2644         | 21              | 17           | 19       | 4.32            | 4.25         | 4.29         |
| CYTO-313            | 2774         | 2166                   | 2470         | 30              | 25           | 28       | 2.43            | 2.37         | 2.40         |
| CIM-616             | 2724         | 1979                   | 2352         | 24              | 19           | 22       | 3.32            | 3.23         | 3.28         |
| CYTO-515            | 2719         | 2351                   | 2535         | 25              | 22           | 24       | 3.20            | 3.06         | 3.13         |
| NIAB-878            | 2672         | 2444                   | 2558         | 30              | 23           | 27       | 2.42            | 2.27         | 2.35         |
| MUBARIK             | 2571         | 1915                   | 2243         | 24              | 20           | 22       | 3.40            | 3.33         | 3.37         |
| SLH-6               | 2512         | 1742                   | 2127         | 19              | 18           | 19       | 4.13            | 4.06         | 4.10         |
| NIAB-1048           | 2492         | 1726                   | 2109         | 24              | 18           | 21       | 2.68            | 2.65         | 2.67         |
| NIAB-1089           | 2465         | 1806                   | 2136         | 35              | 24           | 30       | 2.09            | 2.06         | 2.08         |
| DEEBAL              | 2436         | 1842                   | 2139         | 28              | 23           | 26       | 2.88            | 2.51         | 2.70         |
| GH-HADI             | 2403         | 2348                   | 2376         | 21              | 20           | 21       | 3.51            | 3.31         | 3.41         |
| CIM-663             | 2399         | 1985                   | 2192         | 21              | 20           | 21       | 3.03            | 2.72         | 2.88         |
| VH-363              | 2274         | 2116                   | 2195         | 22              | 20           | 21       | 3.12            | 3.10         | 3.11         |
| BZU-05              | 2270         | 2116                   | 2193         | 17              | 16           | 17       | 4.33            | 4.25         | 4.29         |
| NIAB-545            | 2225         | 1930                   | 2078         | 24              | 18           | 21       | 2.54            | 2.49         | 2.52         |
| FH-142              | 2180         | 1671                   | 1926         | 22              | 16           | 19       | 2.90            | 2.88         | 2.89         |
| BH-184              | 2124         | 2055                   | 2090         | 21              | 20           | 21       | 3.09            | 3.02         | 3.06         |
| NIAB-1064           | 2047         | 1327                   | 1687         | 22              | 17           | 20       | 2.58            | 2.56         | 2.57         |
| CIM-632             | 2009         | 1677                   | 1843         | 23              | 19           | 21       | 2.99            | 2.80         | 2.90         |
| DNH-40              | 2000         | 1533                   | 1767         | 21              | 18           | 20       | 2.62            | 2.25         | 2.44         |
| BH-221              | 1915         | 1573                   | 1744         | 19              | 18           | 19       | 2.83            | 2.73         | 2.78         |
| BAGHDADI<br>HAMMAD  | 1877<br>1858 | 1789<br>1522           | 1833<br>1690 | 22<br>21        | 21<br>18     | 22<br>20 | 2.80<br>2.74    | 2.78<br>2.53 | 2.79<br>2.64 |
| SLH-33              | 1833         | 1610                   | 1722         | 17              | 16           | 20<br>17 | 2.74            | 2.59         | 2.79         |
| SLH-378             | 1806         | 1231                   | 1518         | 22              | 16           | 19       | 2.73            | 2.63         | 2.79         |
| NIAB-444            | 1780         | 1731                   | 1756         | 22              | 21           | 22       | 2.53            | 2.49         | 2.51         |
| ZAKRAYIA-01         | 1775         | 1491                   | 1633         | 21              | 18           | 20       | 3.02            | 2.89         | 2.96         |
| SLH-381             | 1626         | 1425                   | 1526         | 17              | 16           | 17       | 2.92            | 2.81         | 2.87         |
| CIM-717             | 1620         | 1419                   | 1520         | 17              | 15           | 16       | 2.73            | 2.67         | 2.70         |
| BH-212              | 1606         | 1461                   | 1534         | 17              | 15           | 16       | 2.87            | 2.76         | 2.82         |
| SLH-19              | 1600         | 1432                   | 1516         | 19              | 17           | 18       | 2.63            | 2.60         | 2.62         |
| NIAB-1042           | 1596         | 1412                   | 1504         | 21              | 20           | 21       | 2.36            | 2.12         | 2.24         |
| BH-201              | 1573         | 1367                   | 1470         | 19              | 18           | 19       | 2.67            | 2.64         | 2.66         |
| CRIS-578            | 1537         | 1319                   | 1428         | 19              | 17           | 18       | 2.44            | 2.20         | 2.32         |
| SLH-377             | 1314         | 1211                   | 1263         | 15              | 13           | 14       | 2.86            | 2.82         | 2.84         |
| Mean                | 2133         | 1759                   |              | 22              | 19           |          | 2.94            | 2.81         |              |
| Irrigation level    |              | 287**                  |              |                 | 1.86**       |          |                 | 0.11**       |              |
| LSD Genotypes       |              | 172**                  |              |                 | 2.24**       |          |                 | 0.18**       |              |
| Interaction         |              | 244**                  |              |                 | 3.17*        |          |                 | 0.24**       |              |

No stress = (-1.6  $\pm$  0.2 MPa  $\psi_w$ ); Water stress = (-2.0  $\pm$  0.2 MPa  $\psi_w$ ) \*significant at p<0.05 level; \*\*significant at p<0.01 level

Table 6.12 Interactive effects of genotypes and water stress on gas exchange characteristics

| Net photosynthetic rate |              | Transpiration rate     |              |              | Stomatal conductance          |                              |            |                      |            |
|-------------------------|--------------|------------------------|--------------|--------------|-------------------------------|------------------------------|------------|----------------------|------------|
|                         |              | tosyntnet<br>nol CO2 m |              | F/mn         | <b>spiration</b><br>nol H₂O m | rate<br>\-2 <sub>0</sub> -1\ | Stomata    | ol CO <sub>2</sub> m | ctance     |
| Variety Name            | ν (μπ<br>No  | Water                  | 5)           | No           | Water                         | 15)                          | No         | Water                | 5)         |
|                         | stress       | stress                 | Mean         | stress       | stress                        | Mean                         | stress     | stress               | Mean       |
| CIM-343                 | 45.3         | 26.3                   | 35.8         | 9.03         | 6.54                          | 7.79                         | 188        | 136                  | 162        |
| LAALZAR                 | 44.4         | 27.6                   | 36.0         | 7.08         | 6.84                          | 6.96                         | 196        | 121                  | 159        |
| CYTO-313                | 50.0         | 26.1                   | 38.1         | 7.95         | 6.48                          | 7.21                         | 212        | 172                  | 192        |
| CIM-616                 | 43.5         | 25.4                   | 34.5         | 8.17         | 6.94                          | 7.56                         | 196        | 92                   | 144        |
| CYTO-515                | 36.2         | 27.3                   | 31.8         | 7.80         | 7.01                          | 7.40                         | 179        | 144                  | 162        |
| N-878                   | 46.4         | 25.3                   | 35.9         | 5.25         | 5.14                          | 5.20                         | 192        | 144                  | 168        |
| MUBARIK                 | 26.6         | 17.0                   | 21.8         | 7.94         | 7.46                          | 7.70                         | 156        | 134                  | 145        |
| SLH-6                   | 36.8         | 29.3                   | 33.1         | 7.18         | 7.81                          | 7.50                         | 187        | 129                  | 158        |
| NIAB-1048               | 30.1         | 28.2                   | 29.2         | 6.83         | 6.89                          | 6.86                         | 145        | 119                  | 132        |
| NIAB-1089               | 31.9         | 23.8                   | 27.9         | 5.32         | 6.32                          | 5.82                         | 157        | 123                  | 140        |
| DEEBAL                  | 28.2         | 17.3                   | 22.8         | 7.89         | 5.15                          | 6.52                         | 201        | 168                  | 185        |
| GH-HADI                 | 29.7         | 24.0                   | 26.9         | 6.16         | 4.49                          | 5.33                         | 195        | 142                  | 169        |
| CIM-663                 | 35.5         | 31.2                   | 33.4         | 7.17         | 8.87                          | 8.02                         | 168        | 108                  | 138        |
| VH-363                  | 33.1         | 30.5                   | 31.8         | 6.56         | 4.60                          | 5.58                         | 174        | 132                  | 153        |
| BZU-05                  | 37.2         | 28.6                   | 32.9         | 7.55         | 6.48                          | 7.02                         | 143        | 174                  | 159        |
| NIAB-545                | 47.9         | 43.6                   | 45.8         | 8.04         | 7.75                          | 7.89                         | 186        | 158                  | 172        |
| FH-142                  | 34.7         | 21.7                   | 28.2         | 7.85         | 7.99                          | 7.92                         | 173        | 134                  | 154        |
| BH-184                  | 29.8         | 25.6                   | 27.7         | 6.44         | 5.29                          | 5.87                         | 141        | 115                  | 128        |
| NIAB-1064               | 22.2         | 18.9                   | 20.6         | 8.16         | 6.57                          | 7.37                         | 193        | 114                  | 154        |
| CIM-632                 | 34.1         | 24.7                   | 29.4         | 6.95         | 6.56                          | 6.75                         | 175        | 105                  | 140        |
| DNH-40                  | 30.8         | 25.3                   | 28.1         | 7.43         | 6.45                          | 6.94                         | 153        | 115                  | 134        |
| BH-221                  | 59.2         | 33.0                   | 46.1         | 8.59         | 8.09                          | 8.34                         | 175        | 154                  | 165        |
| BAGHDADI                | 32.6         | 29.4                   | 31.0         | 8.67         | 7.35                          | 8.01                         | 180        | 152                  | 166        |
| HAMMAD                  | 36.6         | 24.4                   | 30.5         | 8.39         | 7.97                          | 8.18                         | 211        | 105                  | 158        |
| SLH-33                  | 38.0         | 34.2                   | 36.1         | 7.19         | 6.71                          | 6.95                         | 230        | 182                  | 206        |
| SLH-378                 | 28.4         | 20.5                   | 24.5         | 7.76         | 6.85                          | 7.30                         | 179        | 83<br>455            | 131<br>165 |
| NIAB-444<br>ZAKRAYIA-01 | 26.1<br>36.6 | 15.2<br>30.2           | 20.7<br>33.4 | 8.01<br>8.89 | 6.73<br>7.92                  | 7.37<br>8.41                 | 175<br>171 | 155<br>145           | 158        |
| SLH-381                 | 28.6         | 26.8                   | 27.7         | 7.89         | 5.92                          | 6.91                         | 154        | 124                  | 139        |
| CIM-717                 | 28.8         | 25.3                   | 27.1         | 8.59         | 7.73                          | 8.16                         | 194        | 149                  | 172        |
| BH-212                  | 22.7         | 24.4                   | 23.6         | 6.95         | 6.44                          | 6.69                         | 178        | 117                  | 148        |
| SLH-19                  | 27.1         | 25.9                   | 26.5         | 7.48         | 6.87                          | 7.18                         | 164        | 139                  | 151        |
| NIAB-1042               | 36.5         | 26.1                   | 31.3         | 4.59         | 6.11                          | 5.35                         | 191        | 153                  | 172        |
| BH-201                  | 26.4         | 21.4                   | 23.9         | 8.16         | 7.63                          | 7.90                         | 161        | 142                  | 152        |
| CRIS-578                | 26.4         | 23.3                   | 24.9         | 7.21         | 6.64                          | 6.93                         | 154        | 125                  | 140        |
| SLH-377                 | 33.4         | 23.6                   | 28.5         | 8.10         | 6.93                          | 7.52                         | 198        | 126                  | 162        |
| Mean                    | 34.5         | 25.9                   | _5.0         | 7.48         | 6.76                          |                              | 179        | 134                  | . 3=       |
| Irrigation              |              | 287**                  |              |              | 1.86**                        |                              |            | 0.11**               |            |
| LSD Genotypes           |              | 172**                  |              |              | 2.24**                        |                              |            | 0.18**               |            |
| Interaction             |              | 244**                  |              |              | 3.17*                         |                              |            | 0.24*                |            |

\*significant at p<0.05 level;

\*\*significant at p<0.01 level

Table 6.13 Physiological water use efficiency of different genotypes in normal irrigated and water stressed plots

|              | P <sub>N</sub> /E                                    | E (µmol CO <sub>2</sub> / mmol H <sub>2</sub> O) |      |
|--------------|------------------------------------------------------|--------------------------------------------------|------|
| Variety Name | No stress<br>(-1.6 <u>+</u> 0.2 MPa ψ <sub>w</sub> ) | Water stress (-2.0 $\pm$ 0.2 MPa $\psi_w$ )      | Mean |
| CIM-343      | 5.02                                                 | 4.02                                             | 4.52 |
| LAALZAR      | 6.27                                                 | 4.04                                             | 5.15 |
| CYTO-313     | 6.29                                                 | 4.03                                             | 5.16 |
| CIM-616      | 5.32                                                 | 3.66                                             | 4.49 |
| CYTO-515     | 4.64                                                 | 3.89                                             | 4.27 |
| N-878        | 8.84                                                 | 4.92                                             | 6.88 |
| MUBARIK      | 3.35                                                 | 2.28                                             | 2.81 |
| SLH-6        | 5.13                                                 | 3.75                                             | 4.44 |
| NIAB-1048    | 4.41                                                 | 4.09                                             | 4.25 |
| NIAB-1089    | 6.00                                                 | 3.77                                             | 4.88 |
| DEEBAL       | 3.57                                                 | 3.36                                             | 3.47 |
| GH-HADI      | 4.82                                                 | 5.35                                             | 5.08 |
| CIM-663      | 4.95                                                 | 3.52                                             | 4.23 |
| VH-363       | 5.05                                                 | 6.63                                             | 5.84 |
| BZU-05       | 4.93                                                 | 4.41                                             | 4.67 |
| NIAB-545     | 5.96                                                 | 5.63                                             | 5.79 |
| FH-142       | 4.42                                                 | 2.72                                             | 3.57 |
| BH-184       | 4.63                                                 | 4.84                                             | 4.73 |
| NIAB-1064    | 2.72                                                 | 2.88                                             | 2.80 |
| CIM-632      | 4.91                                                 | 3.77                                             | 4.34 |
| DNH-40       | 4.15                                                 | 3.92                                             | 4.03 |
| BH-221       | 6.89                                                 | 4.08                                             | 5.49 |
| BAGHDADI     | 3.76                                                 | 4.00                                             | 3.88 |
| HAMMAD       | 4.36                                                 | 3.06                                             | 3.71 |
| SLH-33       | 5.29                                                 | 5.10                                             | 5.19 |
| SLH-378      | 3.66                                                 | 2.99                                             | 3.33 |
| NIAB-444     | 3.26                                                 | 2.26                                             | 2.76 |
| ZAKRAYIA-01  | 4.12                                                 | 3.81                                             | 3.97 |
| SLH-381      | 3.62                                                 | 4.53                                             | 4.08 |
| CIM-717      | 3.35                                                 | 3.27                                             | 3.31 |
| BH-212       | 3.27                                                 | 3.79                                             | 3.53 |
| SLH-19       | 3.62                                                 | 3.77                                             | 3.70 |
| NIAB-1042    | 7.95                                                 | 4.27                                             | 6.11 |
| BH-201       | 3.24                                                 | 2.80                                             | 3.02 |
| CRIS-578     | 3.66                                                 | 3.51                                             | 3.59 |
| SLH-377      | 4.12                                                 | 3.41                                             | 3.76 |
| Mean         | 4.70                                                 | 3.89                                             |      |

#### 6.4 Heat Tolerance

# 6.4.1 Adaptability of genotypes to temperature stress

Current rise in temperature is likely to continue during this century and extreme events associated with this rise are also expected to increase in frequency, intensity and persistence increasing the uncertainty in sustainable crop production. An optimum temperature range of 20 to 30°C has been reported for cotton, but cotton is successfully grown at temperatures in excess of 40°C in Pakistan. Climatic anomalies will play an important role in increasing the uncertainties in cotton production. Productivity of cotton genotypes falls markedly at high temperatures. Higher night temperatures give rise to increase in respiration hence reducing the net gain of cotton yield. Sudden shoot up of air temperatures in cotton crop at reproductive stage of their life cycle causes significant reductions in the cotton yield despite affecting the apparent health of the crops. There is no clear consensus about the optimum temperature for cotton as plant response varies with developmental stage and plant organ. The genotypes recommended for general cultivation in cotton growing areas, face very high temperature of about 50°C during the month of May and June, which is approximately 20°C higher than the optimum

temperature required for normal growth, thus retarding performance to higher extent. Plant growth such as shoot development, flowering and fiber quality traits are influenced largely due to high temperature have been well documented. Although adverse temperatures can affect all stages of development, the crop seems to be particularly sensitive to adverse temperatures during reproductive development. The arid areas of Pakistan where the evapo-transpiration rate is already high and water table is shallow, an increase in air temperature may cause loss of water rapidly and consequently the aridity would increase which are the major threats to agriculture and food security. Therefore, the screening of advanced strains for thermal stress tolerance provides basic guidelines to the breeders as well as for the purpose of varietal zoning. Screening is carried out by planting cotton genotypes during mid-April to coincide their fruiting phase with the hottest period of season. Thirty-five genotypes were planted for screening under heat stress conditions.

Genotypes showed wide variation in various physiological parameters conferring to heat tolerance in cotton. Genotype GH-Hadi excelled in heat tolerance considering each trait compared with the other genotypes. Genotype SLH-377 was found to be the most susceptible genotype to heat stress (Table 6.14).

Physiological traits having relevance to heat tolerance were recorded in the genotypes. Results showed that there were positive correlations of pollen viability (r=0.97), percent boll set on first (r=0.91) and second (r=0.90) positions along sympodia with seed cotton yield. There were negative correlations of cell injury (r= -0.98) and electrical conductivity (r= -0.90) with the seed cotton yield. It is suggested that these traits may be taken into account while selecting future genotypes to overcome heat stress problems (Table 6.15).

The dehiscence of anthers declined during the month of July and started to increase gradually from 1<sup>st</sup> week of August reaching upto maximum later in the month of September. The dehiscence of anthers during the season for three genotypes is depicted in Fig. 6.1.

Genotypes differed greatly in their yield performance. The genotype GH-Hadi produced the highest seed cotton yield than the other genotypes tested. Seed cotton yield of different genotypes ranged from 1564 to 3075 kg ha<sup>-1</sup> (Table 6.16).

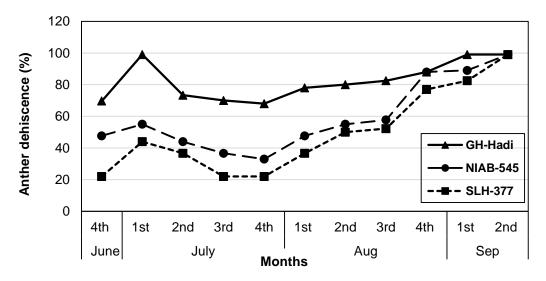



Fig. 6.1 Dehiscence of anthers during the season for three genotypes

**Table 6.14** Physiological traits for determining heat tolerance in different genotypes

| Genotypes AD PV FSNN FSNH SNNF SNHF % BSS RCIL                                                           | EC                     |
|----------------------------------------------------------------------------------------------------------|------------------------|
| Genotypes (%) (%) F3NN F3NN B BSFP B33 (%)                                                               | (μS cm <sup>-1</sup> ) |
| GH-Hadi 95 96 13 10 16 19 44 32 32                                                                       | 175                    |
| CYTO-313 92 94 16 10 17 21 37 31 34                                                                      | 199                    |
| BH-212 91 93 17 9 18 20 33 27 36                                                                         | 266                    |
| HAMMAD   90   91   16   9   17   21   32   22   37                                                       | 185                    |
| CYTO-515 89 92 15 9 16 20 26 22 40                                                                       | 295                    |
| NIAB-545 89 91 14 8 18 22 24 20 40                                                                       | 243                    |
| BZU-5 85 90 16 8 19 23 23 19 41                                                                          | 279                    |
| N-878 84 90 13 7 14 19 23 19 41                                                                          | 231                    |
| LAALZAR 84 89 12 8 14 20 23 19 43                                                                        | 261                    |
| NIAB-1048 84 88 12 8 16 20 22 18 43                                                                      | 301                    |
| CIM-343 82 85 15 9 18 21 22 18 43                                                                        | 308                    |
| BH-221 81 82 16 9 17 19 21 18 44                                                                         | 331                    |
| CIM-663 81 82 16 10 17 21 21 17 44                                                                       | 363                    |
| MUBARIK 80 83 12 9 15 20 20 17 44                                                                        | 272                    |
| NIAB-1089 80 83 15 9 16 20 20 17 46                                                                      | 342                    |
| ZAKRAYIA-1 79 80 16 8 17 20 20 16 48                                                                     | 327                    |
| DEEBAL 78 81 16 10 17 22 20 16 52                                                                        | 334                    |
| FH-142 77 82 14 9 15 19 20 16 53                                                                         | 367                    |
| VH-363                                                                                                   | 365                    |
| SLH-6 72 78 11 7 13 18 19 15 55                                                                          | 331                    |
| BH-184   67   77   14   9   17   21   17   14   56                                                       | 359                    |
| NIAB-1064 66 78 14 9 16 20 17 14 56                                                                      | 380                    |
| DNH-40   65   79   18   10   19   21   17   14   58                                                      | 383                    |
| CRIS-613   65   75   13   9   14   20   16   14   60                                                     | 375                    |
| CIM-717   64   72   15   9   16   23   16   14   65                                                      | 387                    |
| SLH-33   64   70   15   9   16   18   15   13   67                                                       | 389                    |
| BAGHDADI   62   71   15   9   16   21   14   13   72                                                     | 384                    |
| SLH-378 62 73 14 9 16 20 14 13 73                                                                        | 396                    |
| NIAB-444 61 70 15 9 19 24 13 13 75                                                                       | 403                    |
| SLH-381 59 67 15 8 17 23 13 12 75                                                                        | 393                    |
| BH-201 57 66 14 8 15 18 12 12 76                                                                         | 397                    |
| NIAB-1042   56   63   12   9   13   18   11   12   76                                                    | 406                    |
| SLH-19 55 62 15 9 18 23 10 10 85                                                                         | 402                    |
| CRIS-578 54 60 15 9 17 21 10 9 88                                                                        | 408                    |
| SLH-377         50         60         14         8         15         20         10         8         92 | 412                    |
| LSD 9.77** 12.84** 5.1** 3.00** 5.74** 5.09** 8.20** 5.51** 8.04**                                       | 10.08**                |

\*\*significant at p<0.01

AD: Anther Dehiscence SNNFB: Sympodial Node No bearing 1st Boll RCIL: Relative Cell Injury Level SNHFB: Sympodial Node Height bearing 1<sup>st</sup> Boll BSFP: Boll Set on 1<sup>st</sup> Position BSSP: Boll Set on 2<sup>nd</sup> Position EC: Electrical Conductivity PV: Pollen viability

FSSN: First Sympodial Node No. FSNH: First Sympodial Node Height

**Table 6.15** Correlations between seed cotton yield and physiological traits determining heat tolerance

|                           | AD%                | PV(%)              | %BSFP              | %BSSP              | RCIL (%)            | EC                  | NBPP    | BW (g)             |
|---------------------------|--------------------|--------------------|--------------------|--------------------|---------------------|---------------------|---------|--------------------|
| PV (%)                    | 0.97**             |                    |                    |                    |                     |                     |         |                    |
| % BSFP                    | 0.90**             | 0.89**             |                    |                    |                     |                     |         |                    |
| % BSSP                    | 0.88**             | 0.88**             | 0.98**             |                    |                     |                     |         |                    |
| RCIL (%)                  | -0.97**            | -0.97**            | -0.86**            | -0.84**            |                     |                     |         |                    |
| EC (µS cm <sup>-1</sup> ) | -0.90**            | -0.88**            | -0.90**            | -0.89**            | 0.85**              |                     |         |                    |
| NBPP                      | 0.60**             | 0.58**             | 0.58**             | 0.60**             | -0.59**             | -0.54**             |         |                    |
| BW (g)                    | 0.12 <sup>ns</sup> | 0.15 <sup>ns</sup> | 0.08 <sup>ns</sup> | 0.10 <sup>ns</sup> | -0.12 <sup>ns</sup> | -0.08 <sup>ns</sup> | -0.34** |                    |
| SCY(kg ha <sup>-1</sup> ) | 0.99**             | 0.97**             | 0.91**             | 0.90**             | -0.98**             | -0.90**             | 0.60**  | 0.11 <sup>ns</sup> |

: Anther Dehiscence **BSSP** : Boll Set on Second Position NBPP : Number of Bolls Per Plant ΑD PV **RCIL** : Relative ell Injury Level : Boll Weight : Pollen viability BW: Boll Set on First Position : Electrical Conductivity **BSFP** EC SCY : Seed Cotton Yield

Table 6.16 Seed cotton yield in different genotypes planted in mid-April

| Table 6.16 See | Sood sotton viold                           |                              | •                         |
|----------------|---------------------------------------------|------------------------------|---------------------------|
| Genotypes      | Seed cotton yield<br>(kg ha <sup>-1</sup> ) | Number of bolls<br>per plant | <b>Boll weight</b><br>(g) |
| GH-Hadi        | 3075                                        | 25                           | 3.12                      |
| CYTO-313       | 3028                                        | 32                           | 2.41                      |
| BH-212         | 2779                                        | 26                           | 2.99                      |
| HAMMAD         | 2730                                        | 27                           | 2.65                      |
| CYTO-515       | 2730                                        | 26                           | 2.80                      |
|                |                                             |                              |                           |
| NIAB-545       | 2693                                        | 27                           | 2.26                      |
| BZU-5          | 2692                                        | 20                           | 4.15                      |
| N-878          | 2685                                        | 29                           | 2.24                      |
| LAALZAR        | 2640                                        | 17                           | 4.14                      |
| NIAB-1048      | 2632                                        | 24                           | 2.62                      |
| CIM-343        | 2623                                        | 24                           | 2.75                      |
| BH-221         | 2613                                        | 24                           | 2.58                      |
| CIM-663        | 2557                                        | 24                           | 2.87                      |
| MUBARIK        | 2460                                        | 18                           | 2.97                      |
| NIAB-1089      | 2423                                        | 34                           | 2.56                      |
| ZAKRAYIA-1     | 2394                                        | 20                           | 2.49                      |
| DEEBAL         | 2390                                        | 21                           | 2.88                      |
| FH-142         | 2304                                        | 20                           | 3.63                      |
| VH-363         | 2296                                        | 18                           | 2.81                      |
| SLH-6          | 2291                                        | 16                           | 2.54                      |
| BH-184         | 2238                                        | 21                           | 2.75                      |
| NIAB-1064      | 2120                                        | 20                           | 3.00                      |
| DNH-40         | 2070                                        | 19                           | 2.77                      |
| CRIS-613       | 2027                                        | 27                           | 2.52                      |
| CIM-717        | 2011                                        | 26                           | 2.06                      |
| SLH-33         | 1982                                        | 20                           | 2.03                      |
| BAGHDADI       | 1921                                        | 18                           | 3.03                      |
| SLH-378        | 1887                                        | 18                           | 2.65                      |
| NIAB-444       | 1817                                        | 17                           | 2.87                      |
| SLH-381        | 1795                                        | 16                           | 2.38                      |
| BH-201         | 1721                                        | 16                           | 2.83                      |
| NIAB-1042      | 1712                                        | 19                           | 3.84                      |
| SLH-19         | 1678                                        | 18                           | 2.87                      |
| CRIS-578       | 1609                                        | 20                           | 2.26                      |
| SLH-377        | 1564                                        | 16                           | 2.70                      |
| LSD            | 105.7**                                     | 7.79**                       | 0.39**                    |

<sup>\*\*</sup>significant at p<0.01

\_\_\_\_\_\_

#### 7. TRANSFER OF TECHNOLOGY SECTION

Transfer of Technology Section is playing a significant role to disseminate the research findings/ practices for the development of new cotton production & seed technology to farming community & other stakeholders through electronic and print media.

# 7.1 Human Resource Development

#### 7.1.1 Training Programs

The following training programs were arranged during the season:

- i) Agronomy of the cotton crop
- ii) Cotton Production Technology
- iii) Advanced breeding techniques for variety evolution
- iv) Production Technology of new approved commercial cotton varieties
- v) Seed Technologies
- vi) Seed Health and nutrient management
- vii) Interspecific hybridization in cotton: Present status at CCRI, Multan
- viii) Better management of CCRI varieties
- ix) Performance of cotton varieties and their production technology
- x) Pesticide industries management, new chemistry of pesticides and integrated pest management
- xi) Management of cotton diseases
- xii) Cotton crop management
- xiii) New challenges of insect pest of cotton
- xiv) Causes of fibre traits deterioration in Pakistan
- xv) Management of PBW & sucking insect pests
- xvi) Application of PB-Rope & Sucking Insect Pest Management
- xvii) Use of PB Rope for the management of Pink Bollworm & field demonstration on "Application of PB-Rope"

Training programs for Field Staff Agri. (Extension) Department/ farmers & with other departments

| Date       | Organized/                | Venue                     | Resource Person                                                                                                                                                                        | Participants                                                                                                                                     |
|------------|---------------------------|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
|            | Coordinated by            |                           |                                                                                                                                                                                        |                                                                                                                                                  |
| 27.04.2017 | CCRI, Multan              | CCRI, Multan              | i.Dr. Zahid Mahmood<br>ii. Dr. Fiaz Ahmad<br>iii. Dr. Naveed Afzal<br>iv. Ms. Rehana Anjum<br>v.Dr. Idrees Khan<br>vi. Dr. M Naveed<br>vii.Ms. Sabahat Hussain<br>viii. M Ilyas Sarwar | Total=19 Field officers of Pesticides, Seed & Fertlizer Industries                                                                               |
| 28.04.2017 | Agr. Ext.Deptt.<br>Multan | Moza Feroz Pur<br>,Multan | Dr. Muhammad Naveed                                                                                                                                                                    | Total= 72         Farmers       = 59         Director       Ext.       = 01         Deputy Director       Ext.       = 01         F.A       = 11 |
| 10.05.2017 | CCRI, Multan              | CCRI, Multan              | i.Dr. Muhammad Naveed<br>ii. Dr. Fiaz Ahmad<br>iii Dr. M. Naveed Afzal                                                                                                                 | Total=15 Officers Pesticides Company, Sygenta                                                                                                    |
| 15.05.2017 | -do-                      | -do-                      | -do-                                                                                                                                                                                   | Total=159 Technical staff of Agri. Extension & Pest Warning & Quality Control of different districts of Punjab                                   |

| Date           | Organized/<br>Coordinated by                          | Venue                         | Resource Person                                                      | Participants                                                                                                   |
|----------------|-------------------------------------------------------|-------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| May 17-19,2017 | PCCC                                                  | CCRI, Multan                  | i. Dr. Muhammad Naveed<br>ii. Dr. Fiaz Ahmad<br>iii Ms. Rehana Anjum | Total=05 Extension & Research officers from KPK & Baluchistan                                                  |
| 30.05.2017     | CCRI, Multan                                          | Dr. Mehboob Ali<br>Auditorium | Dr. Muhammad Naveed                                                  | Total=147 Technical staff of Agri. Extension & Pest Warning & Quality Control of different districts of Punjab |
| 08.07.2017     | Pakistan Kissan<br>Forum (PKF)                        | Mian Chanuu                   | i. Dr. Zahid Mahmood<br>ii. Dr. M. Naveed<br>iii. Dr. Idrees Khan    | <b>Total=52</b> Farmers =47  NGO's Staff =05                                                                   |
| 01.09.2017     | PCSI, Multan                                          | CCRI, Multan                  | Dr. Muhammad Naveed<br>Afzal                                         | Total=23 Cotton Selectors                                                                                      |
| 13.09.2017     | Agri. Ext. Dept.<br>Lodhran                           | Lodhran                       | Dr. Muhammad Naveed                                                  | Total = 511 Farmers = 500 EDO = 01 DDO = 01 DO = 01 A.O = 03 F.A = 05                                          |
| 15.12.2017     | Agri.Ext.Sindh & South Asian Conservation Agriculture | CCRI ,Multan                  | i. Dr. Zahid Mahmood<br>ii. Dr. Fiaz Ahmad<br>iii. Dr. Idrees Khan   | Total = 22<br>P.Farmers = 18<br>M.Trainee = 04                                                                 |
| 22.02.2018     | PCSI. Multan                                          | CCRI, Multan                  | i. Dr. Zahid Mahmood<br>ii. Dr. M.Naveed Afzal                       | Total =20 Cotton Selectors                                                                                     |
| 02.03.2018     | PCSI, Multan                                          | PCSI, Multan                  | Danish Iqbal                                                         | Total =20<br>Cotton Selectors                                                                                  |

# 7.1.2 Training Program of FAO

Following two training programs by FAO were conducted at CCRI, Multan during the season:

| Date       | Venue        | Title                                                                                                                                            | Organized by                                     | Participants                                                                                                                                                                                                          |
|------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 22.08.2017 | CCRI, Multan | "Training of Trainers<br>(ToT) Program on Field<br>Inspection of Cotton and<br>Rice Seed Crops and<br>Early Generation Seed<br>(EGS) Production" | Food and<br>Agriculture<br>Organization<br>(FAO) | Dr. Zahid Mahmood, Director CCRI Multan delivered lecture on "Procedure and Guidelines for Early Generation Seed Production in Cotton Crop". to representative from FSCR&D and other private sector organizations(37) |
| 25.10.2017 | -do-         | -do-                                                                                                                                             | -do-                                             | -do-                                                                                                                                                                                                                  |

# 7.1.3 Farmers Field Day Program

Farmers Field Day Program was organized on 28<sup>th</sup> September, 2017 at the institute in collaboration with CCRI Multan and M/s Kanzo AG group for field demonstration of cotton varietal performance and application of insecticides for pest management. Around 150 farmers attended the program. Director CCRI Multan, Dr.Zahid Mahmood delivered the lecture to the farmers for better cotton production technology.

# 7.1.4 TV Programs

The following TV programs were conducted during the season:

| Date       | TV Channel                      | Topic                                                                          | Resource Person                                                        | Remarks/Timing     |
|------------|---------------------------------|--------------------------------------------------------------------------------|------------------------------------------------------------------------|--------------------|
| 04.09.2017 | Rohi, Multan                    | Affects of rain on Cotton & precautionary measures against pests               | Dr. Zahid Mahmood                                                      | Recorded/5Minutes  |
| 08.09.2017 | -do-                            | Yield potential and performance of upcoming cotton varieties of CCRI           | Dr. Zahid Mahmood                                                      | Recorded/4Minutes  |
| 14.09.2017 | -do-                            | Role of PCCC Varieties and their performance                                   | Dr. M. Idrees Khan                                                     | Recorded/4Minutes  |
| -do-       | -do-                            | Cotton research activities & steps taken for the solution of crop issues       | i. Dr. Fiaz Ahmed<br>ii. Ms. Sabahat Hussain                           | Live Broadcast     |
| 20.10.2017 | Rohi, Multan                    | Future of Zarat in Pakistan regarding with new Dams and other water reservoirs | Syed Javed Ali Shah                                                    | Recorded/10Minutes |
| -do-       | -do-                            | Govt. Policies for the promotion of cotton in Pakistan                         | Haji M. Akram Ansari                                                   | Recorded/15Minutes |
| -do-       | -do-                            | Current situation of cotton crop                                               | Dr. Khalid Abdullah,<br>VP,PCCC                                        | Recorded/15Minutes |
| 01-11-2017 | Rohi, Multan                    | Impact of Smog on Crops                                                        | Dr. Zahid Mahmood                                                      | Recorded/10Minutes |
| 21-11-2017 | Waseb,<br>Multan                | Introduction of Mechanical Picking at the institute                            | Dr. Zahid Mehmood                                                      | Recorded/3-Minutes |
| -do-       | -do-                            | Crops prepared for Mechanical Picking                                          | Dr. M.Idrees Khan                                                      | Recorded/3-Minutes |
| 30.11.2017 | PTV, Multan                     | Mechanical Picking                                                             | Dr. Zahid Mahmood                                                      | Recorded/03Minutes |
| 05.12.2017 | PTV, Multan<br>Kissan<br>Bethak | Development of Agriculture<br>Sector                                           | i. Prof. Dr. Asif Ali<br>ii. Dr. Zahid Mahmood<br>iii. Mr. Asif Majeed | Recorded/35Minutes |
| 07.12.2017 | -do-                            | CCRI Achievements in Cotton Research & Development                             | Dr. Zahid Mehmood                                                      | Recorded/3-Minutes |
| 26.12.2017 | AbTak,<br>Multan                | Mechanical Picking                                                             | Dr. Zahid Mahmood                                                      | Recorded/05Minutes |
| -do-       | -do-                            | Cotton Production Technology for Mechanical Picking                            | Dr. M. Idrees Khan                                                     | Recorded/03Minutes |

# 7.1.5 TV/Press Coverage

The section arranged media coverage for various meetings/seminar during the season:

| Date            | Media Coverage                                                                       |
|-----------------|--------------------------------------------------------------------------------------|
| 24.03.2017      | Seminar on "Pink Boll Worm & its Management"                                         |
| Mar 28-30, 2017 | Agriculture Research Sub-Committee (ARSC) Meeting                                    |
| 28.03.2017      | Meeting of National Assembly Standing Committee on Textile Industry                  |
| 10.04.2017      | Seminar on "Cotton Production Technology & CLCuV Management"                         |
| 27.04.2017      | Cotton Crop Management Group (CCMG) Meeting                                          |
| 09-10-2017      | MoU Signing Ceremony b/w PCCC & ICRA                                                 |
| 14.10.2017      | "Cotton Travelling Seminar 2017 at CCRI Multan"                                      |
| 20.10.2017      | Seminar on "Soil Health Improvement and Nutrition Management"                        |
| Nov 21-22, 2017 | 6th International Conference of Pakistan Phytopathological Society "Plant Health for |
|                 | Sustainable Agriculture                                                              |
| 30.11.2017      | Demonstration of Mechanical Cotton Picking                                           |

**7.1.6** Preparation of Video Clips
Following video clips were prepared for farmer's advice/information during the season:

| Date       | Topic                                                                            | Remarks                           |
|------------|----------------------------------------------------------------------------------|-----------------------------------|
| 13.08.2017 | Recommendations to avoid cotton fruit fall                                       | Uploaded on CCRI FB official page |
| 14.09.2017 | Cotton Travelling Seminar 2017 at CCRI Multan                                    | -do-                              |
| 16.09.2017 | Mealy bug Identification & its Management                                        | -do-                              |
| 26.09.2017 | ی ی آر آئی ملتان کے تجرباتی کھیتوں میں گئی کیاس کی نئی اقسام کی کار کردگی        | -do-                              |
| 28.09.2017 | ى ئى ماتان يىن فار مرز فىيلڈ ۋے برو گرام                                         | -do-                              |
| 09.10.2017 | MoU Signing Ceremony b/w PCCC & ICRA                                             | -do-                              |
| 12.10.2017 | Dr. Michael Fok ,Chairman ICRA visiting to Progressive Farmers in Mailsi &Vehari | -do                               |
| 25.10.2017 | پاکستان کی تاریخ میں پہلی مرستبہ کپاس کی مشیغی چنائی کا عملی مظاہرہ              | -do-                              |
| 29.10.2017 | كپاس 2017 كى صور تحال پر تيمره: كاڻن كمشنر ڈاكٹر خالد عبدالله                    | -do-                              |
| 14.11.2017 | Goats grazing in the cotton fields after last picking                            | -do                               |
| 27.11.2017 | Cotton Variety Bt-343: Interview Director CCRI Multan                            | -do-                              |

7.1.7 Radio Programs

The following Radio programs were recorded during the season:

| Date       | Radio                        | Topic                                                                                                                            | Resource Person                                       | Remarks                        |
|------------|------------------------------|----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|--------------------------------|
| 03.04.2017 | Radio<br>Pakistan,<br>Multan | پانی کی کمیابی کے" تناظر میں Talk on<br>کپاس کی بہتر پیداوار"                                                                    |                                                       | Recorded & on air 5-minutes    |
| -do-       | -do-                         | کپاس کی بہتر پیداوار کے " Talk on<br>لیے زمین کے تجزیہ کی اہمیت"                                                                 | -do-                                                  | Recorded & on air 5-minutes    |
| -do-       | -do-                         | Talk on" Control of sucking insect pest at early stage of cotton"                                                                | Dr. Muhammad<br>Naveed                                | Recorded & on air 5-minutes    |
| 13.04.2017 | Radio Pakistan<br>Multan     | Talk on "Pink Bollworm Management"                                                                                               | Dr. Muhammad<br>Naveed                                | Recorded & on air 5-minutes    |
| -do-       | -do-                         | Talk on "Use of fertilizer and irrigation requirement for cotton crop"                                                           |                                                       |                                |
| 17.04.2017 | FM-Solo 88,<br>Multan        | Talk on "Management strategy against Pink Bollworm in collaboration with agri. extension dept. (Punjab), PW&QC and CCRI, Multan" | Dr. Muhammad<br>Naveed                                | Recorded & on air<br>5-minutes |
| -do-       | -do-                         | Talk on "Management of sucking insect pests at early stage of Cotton"                                                            | Dr. Muhammad<br>Naveed                                | Recorded & on air 5-minutes    |
| -do-       | -do                          | Talk on "Dusky cotton bug, mode of damage & its control"                                                                         | Ms. Shabana<br>Wazir                                  | Recorded & on air 4-minutes    |
| -do-       | -do                          | Talk on "Management of CLCuV"                                                                                                    | Ms. Sabahat<br>Hussain                                | Recorded & on air 5-minutes    |
| 19.04.2017 | Radio Pakistan<br>,Multan    | Talk on "Climatic change and cotton"                                                                                             | Ms. Asiya<br>Perveen                                  | Recorded & on air 5-minutes    |
| 21.04.2017 | Radio<br>Pakistan,<br>Multan | Talk on "Climatic Change & Cotton"                                                                                               | Ms. Asia<br>Perveen                                   | Recorded & on air 5-minutes    |
| 26.04.2017 | FM 98, Multan                | Talk on "Selection of cotton for core and non-core zones of cotton"                                                              | Dr. Muhammad<br>Idrees Khan                           | Recorded & on air<br>7-minutes |
| 30.05.2017 | FM SOLO-88,<br>Multan        | Group discussion on "Early protection for sucking insect pests of cotton"                                                        | Muhammad<br>Naveed<br>Rabia Saeed<br>s. Shabana Wazir | Recorded & on air 30-minutes   |

| 13.07.2017 | Radio<br>Pakistan,<br>Multan | کیاس کی بیماریاں اور ان کا " Talk on"<br>"تدارک           | Ms. Sabahat<br>Hussain | Recorded & on air 5-minutes |
|------------|------------------------------|-----------------------------------------------------------|------------------------|-----------------------------|
| 13.01.2018 | FM-101,Multan                | Interview on "Cotton seed purity issues & their solutions | Hafiz<br>M.Imran,SO    | Recorded<br>/05Minutes      |

### 7.1.8 Preparation of a documentary film by Radio Pakistan, Multan

A documentary film on "Research activities of CCRI Multan" was prepared by the section in coordination with Radio Pakistan, Multan on October 27, 2017 during the season.

#### 7.1.9 Press Releases

Forty one (41) press releases throughout the season were sent to the press time to time for publication.

#### 7.1.10 Articles

Three (03) Urdu articles with up to date recommendations were composed and sent to the press for the guidance of cotton growers during the season.

#### 7.1.11 Cotton Review 2017

On the request of Daily Jang, Multan, a cotton review 2017 report was prepared by the section and sent for publish on December 20,2017.

#### 7.1.12 Tele-Cotton SMS Service

Following activities regarding Tele-Cotton SMS Service were conducted during the season:

- a. Fifty Eight (58) Tele-Cotton SMS were sent to more than 10,000 cotton growers, extension workers and other stakeholders regarding better crop management during the season.
- b. Almost Six Thousand (6000) clients of Tele-Cotton were registered in database during the season.

#### 7.1.13 Posts for Social Media

No. of posts regarding "Recommendations for Cotton Production Technology" were prepared and uploaded on official FB Page of the Institute during the season.

## 7.1.14 Preparation of Leaflet

The section composed & got printed the following leaflet during the season:

| Leaflet                                                                     | Nos. |
|-----------------------------------------------------------------------------|------|
| Management of PBW by PB-Rope کپاس کی گلابی سنڈی کا تدارک بزریعہ پی بی - روپ | 2000 |
| Cyto-124                                                                    | 800  |
| Cyto-179                                                                    | 800  |
| CIM-573                                                                     | 800  |
| CIM-620                                                                     | 800  |
| Bt.CIM-598                                                                  | 800  |
| Bt.CIM-599                                                                  | 800  |
| Bt.CIM-602                                                                  | 800  |
| Recommendations for better seed germination                                 | 800  |

### 7.1.15 Distribution of Printed Material

The following leaflets were distributed among growers, extension workers, agri. students of different colleges/universities etc. & field officers of Agri. Extension (Punjab) for their information and guidance during the season:

- Recommendations of Cotton Variety CIM-496
- Recommendations of Cotton Variety CIM-534
- Recommendations of Cotton Variety CIM-573
- Recommendations of Cotton Variety CIM-608
- Recommendations of Cotton Variety CIM-620

- Recommendations of Cotton Variety Cyto-124
- Recommendations of Cotton Variety Cyto-179
- Recommendations of Cotton Variety Bt.CIM-598
- Recommendations of Cotton Variety Bt.CIM-599
- Recommendations of Cotton Variety CIM-496
- Recommendations of Cotton Variety Bt.CIM-602
- Management of Pink Bollworm
- Recommendations for better seed germination
- Kapsa Ki Kasht Aur Nighehdasht
- Kapas K Beej Ka Ugaaou Aur Behtar Sifarshat
- Kapaas mein Potash ki Ahmiyat
- Kaps Ki Mealy Bug Aur Oos Ka Insdaad
- Kapaas Ki Patta Maror Bemari Sy Bachaou Ki Hikmat-E-Amli
- Kapaas ki Meleybug

#### 7.1.16 Demonstration of Mechanical Picking

| Date       | Participants                                              | Briefed by                  |
|------------|-----------------------------------------------------------|-----------------------------|
| 30.11.2017 | Media personals of national newspapers ,Radio & TV        | Dr. Zahid Mahmood, Director |
| 26.12.2017 | Large no. of Growers, Stakeholders and Media<br>Personals | -do-                        |

#### 7.2 Meetings

# 7.2.1 Agriculture Research Sub-Committee (ARSC)

Three days annual meeting of Agriculture Research Sub-Committee (ARSC) of Pakistan Central Cotton Committee (PCCC) was held at Central Cotton Research Institute (CCRI), Multan on March 28-30, 2017 under the chairmanship of Dr. Khalid, Abdullah, Vice President (PCCC)/Cotton Commissioner, MinTex. The agenda of the meeting was the consideration of Annual Summary Progress Report for the year 2016-17 and the approval of Annual Program of Research Work for the year 2017-18. The meeting was attended by all members of the subcommittee PCCC offices, other public stakeholders, private seed sector and progressive farmers. The section provided all type of technical facilities to organize the meeting.

#### 7.2.2 Cotton Crop Management Group (CCMG)

Following Six (06) Cotton Crop Management Group (CCMG) meetings were held at Central Cotton Research Institute, Multan/other venues during the season:

| Date/Venue   | Chaired by/Special guests                                                         |
|--------------|-----------------------------------------------------------------------------------|
| 27.04.2017   | i. Mr. Naeem Akhtar Khan Bhaba, Minister for Agriculture, Punjab                  |
| CCRI, Multan | ii. Mr. Muhammad Mahmood, Secretary Agriculture, Punjab                           |
|              | ii. Syed Fakhar Imam, Makhdum Ahmad Alam Anwar                                    |
| 15.05.2017   | i. Mr. Naeem Akhtar Khan Bhaba, Minister for Agriculture, Punjab                  |
| CCRI, Multan | ii. Mr. Muhammad Mahmood, Secretary Agriculture, Punjab,                          |
|              | iii.Dr. Khalid Abdullah,Cotton Commissioner, Mintex                               |
| 15.06.2017   | i. Abdul Rehman Ijaz Gondal, Additional Secretary Agriculture (Task Force) Punjab |
| CCRI, Multan |                                                                                   |
| 20.07.2017   | i. Mr. Muhammad Mahmood, Secretary Agriculture, Punjab                            |
| CCRI, Multan |                                                                                   |
| 17.08.2017   | i. Mr. Muhammad Mahmood, Secretary Agriculture, Punjab                            |
| Bahawalpur   | ii. Syed Fakhar Imam, Ex. Speaker National Assembly                               |
|              | iii. Dr. Khalid Abdullah, Cotton Commissioner, Mintex                             |
| 07.10.2018   | i. Mr. Muhammad Naeem Akhtar Khan Bhaba, Agriculture Minister Punjab              |
| Jalal Pur    | ii. Syed Fakhar Imam, Ex. Speaker National Assembly                               |
| Pirwala      |                                                                                   |

Meeting was attended by all the stakeholders of cotton economy including Vice Chancellor, MNSUA, Multan, Director Generals (DGs) Extension, PW&QC, Research,

information and agri scientists, district officers' agriculture extension from Multan, Sahiwal, Bahawalpur and DG Khan Divisions, and senior officials of water management and energy, chief engineers of irrigation department, Punjab, representative of MEPCO, Multan and progressive growers, pesticides & fertilizers' companies' representatives were also there to share their opinions with the participants on different issues related to cotton. The section provided technical facilities to assist the meeting.

#### 7.2.3 National Assembly Standing Committee on Textile Industry

The National Assembly Standing Committee on Textile Industry, held a meeting at the Institute on March 28, 2017 regarding activities of the PCCC in cotton promotion. Dr. Khalid Abdullah, Cotton Commissioner, Ministry of Textile Industry briefed the Committee in details about the cotton crop situation in all aspects. The Committee appreciated the efforts of the PCCC for encouraging the growth of cotton by using modern techniques and methods and recommended that massive awareness should be given to the cotton growers and farmers through electronic and press media which could be helpful to increase the cotton growth in the Country. The members of committee also visited various laboratories of the institute. The members of the Committee highly appreciated the research work conducted by the scientists of the institute. MNAs, Sardar Muhammad Shafqat Hayat Khan, Ms. Ghulam Bibi Bharwana, Malik Shakir Bashir Awan, Mr. Abdul Rashid Godil, Malik Abdul Ghaffar Dogar, Mr. Jamshaid Ahmed Dasti, attended the meeting, besides the officials of the PCCC & CCRI, Multan.

# 7.2.4 6<sup>th</sup> Meeting of Federal Cotton Committee

6<sup>th</sup>meeting of Federal Committee on Cotton (FCC) was held under the chairmanship of Dr. Khalid Abdullah, Cotton Commissioner, Ministry of Textile Industry, and Government of Pakistan on March 25, 2017. Representatives of Pakistan Central Cotton Committee (PCCC), Pakistan Metrological Department, Federal Plant Protection Department, Ministry of National Food Security & Research, Pakistan Bureau of Statistics, Zarai Tarqiati Bank Limited (ZTBL), National Fertilizer Development Corporation (NFDC), Federal Seed Certification & Registration Department (FSCR&D), Agriculture Department from Punjab, Sindh &Khyber Pakthun khawa and cotton farmers attended the meeting. The house unanimously agreed to fix the cotton area and production target. The section provided all type of technical facilities to organize this meeting.

#### 7.2.5 Cotton Crop Assessment Committee Meeting

Following two meetings of Cotton Crop Assessment Committee (CCAC) were attended by the Director of the Institute held at Islamabad during the season:

| Date       | Chaired by                                                                   |
|------------|------------------------------------------------------------------------------|
| 10.08.2017 | Mr. Hassan Iqbal, Federal Secretary, Ministry of Textile Industry, Islamabad |
| 02.11.2017 | Mr. Hassan Igbal, Federal Secretary, Ministry of Textile Industry, Islamabad |

# 7.2.6 Steering Committee Meeting

A significant meeting of steering committee regarding Research Grants-Round-III under USAID was convened at Faisalabad on May 20, 2017 under the chairmanship of Prof Dr. Iqrar Ahmad Khan, Vice Chancellor University of Agriculture, Faisalabad. In presenting Session, Dr. Naveed, SSO/Head & Dr. Rabia Saeed.SO of Entomology Section of the Institute defended their research proposal "Insecticide Resistance Management of Pink Bollworm"

#### 7.2.7 Better Cotton Initiative (BCI) meeting with ginners

Dr. Shafiq Ahmed, Head, Better Cotton Initiatives (BCI), coordinated a meeting with Cotton Ginners, farmers and refuse at CCRI, PCCC, Multan on July 6,2017. Agenda of the meeting was registration of to register the Cotton ginners of Multan and Muzaffargarh Districts to act as stakeholder with PCCC which will work as Implementing

Partner with BCI in both districts of Punjab province. Registration process for the growers for Better Cotton Production will also be done soon. Ministry of Textile Industry is financing this three years project through PSDP. 2-3 districts will also be taken on board in Sindh province. In coming years BC production program shall be expanded to whole cotton belt.

### 7.2.8 Project Steering Committee meeting

Project Steering Committee meeting of the PARB-Funded Project held at CCRI Multan on 22 September 2017 under the chairmanship of Prof. Dr. Muhammad Jalal Arif, Chairman, Department of Entomology, University of Agriculture, Faisalabad. The representative from collaborating partners of the project e.g., UAF, MNSUA, CCRI Multan attended the meeting. The project major activities include collaborative efforts for the management and control of Pink bollworm and cotton whitefly in the Punjab. Later the participants visited cotton fields of the Institute.

#### 7.2.9 Cotton Production Plan 2018-19 Meeting

Dr. Zahid Mahmood, Director CCRI Multan attended meeting regarding "Cotton Production Plan 2018-19" held on 14.12.2017 under the chairmanship of Ch. Abdul Ghaffor, Director Agriculture Coordination (Farms & Training), Punjab Lahore at Ayub Agricultural Research Institute, Faisalabad. Dr. Zahid Mahmood proposed various measures for improvement and fine-tuning of cotton production technology brochures, stressed for continuation of off-season management of Pink bollworm and regular participation of scientists from CCRI Multan in farmers training programs.

#### 7.2.10 Annual Review of Cotton Experiments

Annual review of cotton experiments was held at the institute on October 31, 2017. Dr. Zahid Mahmood, Director CCRI Multan inspected the performance of cotton experiments conducted by the Agronomy Section and Cytogenetics Section. Dr. Muhammad Naveed Afzal, Head Agronomy and Ms Rehana Anjum, Head, Cytogenetics briefed about the performance of various experiments conducted by the Sections. All scientific staff of the Institute was present on this occasion.

#### 7.3 Seminars

#### 7.3.1 National Seminar

The following seminars were conducted during the season:

| Date/Venue                 | Title                                                   | Organized<br>by | Participants                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|----------------------------|---------------------------------------------------------|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 24.03.2017<br>CCRI, Multan | "Pink Boll Worm & its<br>Management"                    | CCRI,<br>Multan | Dr, Khalid Abdullah, Cotton Commissioner MinTex/<br>Vice President, PCCC, Khursheed Khan Kanjoo,<br>Ex MPA, Khalid Khokhar, President Pakistan<br>Kissan Ittehad, , Dr. Jasuu Paul ,Chairman PCGA<br>Asif Majeed, Kanzo AG and other public<br>stakeholders, private seed sector progressive<br>farmers from all provinces attended this seminar.<br>Almost more than 200 farmers attended this<br>seminar.                                                                                                                                 |
| 10.04.2017<br>CCRI, Multan | "Cotton Production<br>Technology & CLCuV<br>Management" | CCRI,<br>Multan | Naeem Akhtar Khan Bhaba, minister agriculture, Punjab chaired the seminar. Mr. Hassan Iqbal, Federal Secretary, Ministry of Textile, Industry, Dr, Khalid Abdullah, Cotton Commissioner MinTex/ Vice President, PCCC, Dr. Noor ul Islam, Chief Executive, PARB, Dr. Asif Ali, Vice Chancellor, MNSUA, Zafaryab Haidar, Director General Agriculture Extension(Punjab), and other public stakeholders, private seed sector progressive farmers from all provinces attended this seminar. Almost more than 250 farmers attended this seminar. |

| 03.06.2017<br>Lodhran             | "Use of PB Rope for PBW Management"                                               | Agri.<br>Extension<br>Deptt.<br>Lodhran                 | Deputy Commissioner Lodhran, Raja Khurram Shehzad, Chairman District Council Lodhran Mian Rajan Sultan Pirzada and large number of progressive cotton farmers attended the seminar. Dr. Naveed Cotton Entomologist CCRI, Multan delivered lecture on "Management of Pink Bollworm by using PB-Rope" to the participants of seminar.(Farmers=211)                                                                                                                                                                                                                                                                                                                                                          |
|-----------------------------------|-----------------------------------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 01.08.2017<br>Piplan,<br>Mianwali | "Management of Pink<br>Bollworm"                                                  | Pakistan<br>Crop<br>Protection<br>Association<br>(PCPA) | Cap.(R) Muhammad Mahmood, Secretary Agriculture Punjab was the Chief Guest of the Seminar. Director General Extension Sayyed Zafaryab Haider Naqvi, DG Research, Dr Abid, Director Cotton Dr. Sagheer Ahmad. Rao Shahid, Secretary PCPA & Mr. Asif Majeed, Chairman Evoyl group attended the seminar. More than 1500 farmers attended the event. Dr.Muhammad Naveed, Entomologist of the institute delivered the lecture to the participants. All participants appreciated the presentation. (Farmer=283)                                                                                                                                                                                                 |
| 20.10.2017<br>CCRI, Multan        | "Soil Health Improvement and Nutrition Management in Cotton"                      | CCRI,<br>Multan                                         | The seminar was attended by Haji Muhammad Akram Ansari, State Minister for Commerce & Textile Industry, Syed Javaid Ali Shah, Federal Minister for Water Resource was the co-chairman of the seminar Muhammad Ali Khokhar, Member Provincial Assembly Punjab, Prof. Dr. Asif Ali, Vice Chancellor MNSUA, Dr. Khalid Abdullah, Vice President PCCC and no. of agri. Scientists from various institutions & representatives of private sectors were also present in the seminar. Dr. Zahid Mahmood, Director CCRI Multan & Dr.Fiaz Ahmed,Head,Plant Physiology & Chemistry section delivered the lectures to the participants. Almost 100 cotton growers of various cotton zone areas attended the seminar. |
| 26.10.2017<br>Ghotki              | "Strategies to Manage<br>Pink Bollworm and<br>Methods of Clean<br>Cotton Picking" | CRS,Ghotki                                              | Dr. Zahid Mahmood, Director CCRI Multan, Dr. Waris Sanjrani, Director CCRI Sakrand, Mr. Aziz Ahmad Memon, Officer Incharge, CRS Ghotki and almost 300 progressive farmers attended the seminar.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

# 7.3.2 International Seminar

| Date                                                   | Seminar                                                                                                 | Venue              | Organized by                                                                 | Participants                |
|--------------------------------------------------------|---------------------------------------------------------------------------------------------------------|--------------------|------------------------------------------------------------------------------|-----------------------------|
| May 11 to May 31,2017                                  | Seminar on "Climate change<br>and agricultural sustainable<br>development for developing<br>countries"  | Beijing,<br>China  | Foreign Economic<br>Cooperation Center,<br>China                             | Hafiz Muhammad<br>Imran     |
| June 27 to July 17,2017                                | Seminar on "Modern Agriculture management for belt & road countries                                     | -do-               | Foreign Economic<br>Cooperation Center,<br>Ministry of<br>Agriculture, China | Mr.Danish Iqbal             |
| 27 <sup>th</sup> June to 17 <sup>th</sup><br>July,2017 | Seminar on "Modern<br>Agriculture management for<br>belt & road countries                               | -do-               | Ministry of Commerce ,China                                                  | Dr.Muhamma<br>d Ahmed       |
| July11 to August<br>11, 2017                           | Seminar on "National Ecological Civilization and climatic change for the belt & road countries in 2017" | Yangling,<br>China | International exchange center Yangling, China                                | Ms. Asia Perveen            |
| August 18 to<br>September<br>7,2017                    | Seminar on "Management of agriculture and agricultural products for Pakistan"                           | Xinjiang,<br>China | Dept. of commerce<br>Xinjiang, China                                         | Dr.Muhammad<br>Naveed Afzal |

| 1 <sup>st</sup> October to | Seminar on "Planning &       | Beijing, | China | Dr.Fazal-i-Dayam |
|----------------------------|------------------------------|----------|-------|------------------|
| 22 <sup>nd</sup>           | Development for Pakistan and | China    |       | Shehzad          |
| October,2017               | China"                       |          |       |                  |

# 7.3.3 Traveling Seminar

The scientists of traveling seminar visited the Institute on September 14, 2017. Mr.Muhammad Saeed Khan, SO, PBG & Hafiz. Abdul Haq, SO, Plant Breeding Section of the Institute participated in the seminar along with other Agri. Scientists of all provinces. Dr.Tassawar Husain Malik. Director Research PCCC was the organizer of this traveling seminar.

# 7.4 MoU Signing Ceremony b/w PCCC & ICRA

The International Cotton Advisory Committee (ICAC) established the International Cotton Researchers Association (ICRA) for the cotton researchers across the globe. PCCC was selected after competition for hosting of the ICRA Secretariat and was finally selected to host the Secretariat for 5 Years. In this regard, a MoU signing Ceremony between PCCC & ICRA was held at CCRI Multan on 9<sup>th</sup> October, 2017. Dr. Michael Fok, Chairman, ICRA and Dr. Khalid Abdullah, Vice President, PCCC signed the MoU. The Secretariat will coordinate among cotton researchers and provide a platform for building linkages through enhancing membership and addressing cotton issues. Dr. Fiaz Ahmad was nominated as Secretary and Mr. Zahid Khan was nominated as Assistant Secretary for this Secretariat.

7.5 Participation in Workshop/Conference

|                                     | ation in workshop/contenent                                                                                             |                            |                                                                        | Participants                                                                  |  |  |  |  |  |
|-------------------------------------|-------------------------------------------------------------------------------------------------------------------------|----------------------------|------------------------------------------------------------------------|-------------------------------------------------------------------------------|--|--|--|--|--|
| Date                                | Workshop/Conference                                                                                                     | Venue                      | Organized by                                                           | Participants                                                                  |  |  |  |  |  |
| April 23-27, 2017                   | Workshop on "emerging roles of producer & farmers associations/cooperatives                                             | Dhaka,<br>Bangladesh       | National Productivity Organization, Ministry of Industries, Bangladesh | Mr. Sajid<br>Mahmood                                                          |  |  |  |  |  |
| May 2 to May<br>4,2017              | 1 <sup>st</sup> International Conference on<br>"Climate Change and<br>Biodiversity"                                     | IUB                        | Cholistan Institute of Desert Studies (CIDS)                           | i.Mr.Muhammad<br>Naveed Afzal<br>ii.Mr.Muhammad<br>Tariq                      |  |  |  |  |  |
| May8 to May 11                      | Conference on "Dynamics trends in plant sciences: Fostering Environment-2017                                            | Quetta                     | Pakistan Botanical<br>Society                                          | Dr.Muhammad<br>Ahmed                                                          |  |  |  |  |  |
| August 3-4, 2017                    | Workshop on "Field Inspection<br>of Seed Crops and Early<br>Generation Seed (EGS)<br>Production)"                       | CCRI,<br>Multan            | Food and Agriculture<br>Organization (FAO)                             | Dr. Zahid<br>Mahmood,<br>Director CCRI<br>Multan                              |  |  |  |  |  |
| October 22 to<br>December<br>2,2017 | Workshop on "Integrated agriculture and rural development through the participation of local farmers                    | Japan                      | JICA, Japan                                                            | Ms. Shabana<br>Wazir                                                          |  |  |  |  |  |
| November 11-<br>15,2017             | International Conference on " Tackling climate change through Plant Breeding"                                           | RWP                        | Dept. of PBG PMAS-<br>Asia Agriculture                                 | Mr.Muhammad<br>Tariq                                                          |  |  |  |  |  |
| November 20-22, 2017                | 6th International Conference of<br>Pakistan Phytopathological<br>Society "Plant Health for<br>Sustainable Agriculture " | CCRI,<br>Multan<br>& B.Z.U | CCRI, Multan<br>& B.Z.U                                                | Around 500 participants (local 475, international 25) attended the conference |  |  |  |  |  |

#### 7.6 Visitors

a)

| Dignitaries/Delegation                                                                      | Dated      |
|---------------------------------------------------------------------------------------------|------------|
| Mr. Naeem Akhtar Khan Bhaba, Minister for Agriculture, Punjab                               | 27.04.2017 |
| Mr. Muhammad Mahmood, Secretary Agriculture, Punjab                                         | 27.04.2017 |
| Syed Fakhar Imam, Makhdum Ahmad Alam Anwar                                                  | 27.04.2017 |
| Dr. Khalid Abdullah, Cotton Commissioner, Mintex                                            | 15.05.2017 |
| Dr M. Sarwar, Principal Scientist/Entomologist, NIBGE                                       | 23.05.2017 |
| Dr. Shakeel Khan, FAO Seed Sector Consultant                                                | 17.08.2017 |
| Dr. Michael Fok, Chairman, ICRA                                                             | 09.10.2017 |
| Haji Muhammad Akram Ansari, State Minister for Commerce & Textile Industry                  | 20.10.2017 |
| Syed Javaid Ali Shah, Federal Minister for Water Resource                                   | 20.10.2017 |
| Mr. Kaleem Khalid, Mr. Mahmood and Mr. Muhammad Kamil from Federal Audit Department;        | 07.11.2017 |
| Lahore                                                                                      |            |
| Six member Chinese cotton researcher led by Prof. Dr. Madam Qu Yan Ying, Director,          | 07.12.2017 |
| Research Group of Cotton Molecular Breeding                                                 |            |
| 22-member delegation comprising of farmers and extension officials from Sindh province led  | 15.12.2017 |
| by Dr. Nisar Memon, Director, Water Resources Improvement Project, World Bank and Dr.       |            |
| Mushtaq Gill, Chief Executive Engineer, South Asian Conservation Agriculture Network, Sindh |            |
| MNAs, Sardar Muhammad Shafqat Hayat Khan, Ms. Ghulam BibiBharwana, Malik Shakir             | 28.03.2017 |
| Bashir Awan, Mr. Abdul Rashid Godil, Malik Abdul GhaffarDogar, Mr. Jamshaid Ahmed Dasti     |            |
| etc member of National Standing Committee,MinTex                                            |            |
| Mr. Khursheed Khan Kanjoo, Ex MPA                                                           | 24.03.2017 |
| Khalid Khokhar ,President Pakistan KissanIttehad,                                           | 24.03.2017 |
| Dr. Jasuu Paul ,Chairman PCGA                                                               | 24.03.2017 |
| Mr. Hassalqbal, Federal Secretary, Ministry of Textile,                                     | 10.04.2017 |
| Dr. Noor ul Islam, Chief Executive, PARB                                                    | 10.04.2017 |
| Mr. Moazzam Sheikh, CEO, Sanifa                                                             | 19.10.2017 |

b) Student Study Tour

| Name of University/Institution                          | No. of Participants |
|---------------------------------------------------------|---------------------|
| University of Agriculture, Faisalabad                   | 300                 |
| University College of Agriculture, BZU, Multan          | 18                  |
| Muhammad Nawaz Sharif University of Agri. Multan(MNSUA) | 35                  |
| Islamia University, Bahawalpur                          | 41                  |
| Govt. College of Layyah                                 | 49                  |
| Multan Garrison Army Public School                      | 85                  |
| Joint Degree Program of Sukkur IBA and UAF              | 62                  |

# c) Visit of Senior Management Course, NMC, Lahore

A group of 10 participants from 22nd Senior Management Course of National Management College Lahore visited CCRI Multan on December 4, 2017. Dr. Zahid Mahmood, Director CCRI Multan briefed the participants about cotton research and development programs carried by the Institute. The participants were later visited field and laboratories and appreciated the research work of the Institute. The participants also appreciated the introduction of mechanical cotton picker for the growers in Pakistan.

# 7.6 Face book Page CCRI, Multan

A page on Face book <u>www.facebook.com/CCRIM.PK</u> is being regularly updated by the Section to disseminate the research activities of the Institute on social media.

\_\_\_\_\_

#### 8 FIBRE TECHNOLOGY SECTION

Fibre Technology section was established in 1976. The prime objective of Fibre Technology section is to provide technical support to Plant Breeding & Cytogenetics sections in testing of fibre characteristics and spinning potential of newly developed cotton cultivars & strains and facilitates the other sections of the institute as well, to investigate the effect of different agricultural practices on fibre characteristics. The section also extended these facilities to the cotton breeders working in CCRI Sakrand, CRS Ghotki, CRS D.I.Khan, CRS Mirpur Khas, CRS Lasbella, CRS Sibbi and to other relevant public and private parties as well. Research activities were focused to study the effects of cotton leaf curl virus disease incidence & different moisture content levels on fibre characteristics of cotton. The department also conducted the "Quality Survey" in the core cotton producing districts of Punjab to determine the overall cotton fibre quality of the region grown commercially through lint sample collection from the cotton ginning factories of the respective areas. For this purpose, 851 samples were drawn from 211 ginning factories. Moreover, the spinning industry of Punjab province was also visited to accumulate information regarding the utilization of cotton fibre with special reference of the cotton fibre traits and others fibres as well in industry along with imported cotton. The achievements are given as under:

#### 8.1 Testing of Lint Samples

The lint samples received from various sections of the institute, research stations of PCCC, government research stations, research scholars of different universities and private textile industry were tested for different fibre characteristics. The section also provided technical support to Pakistan Institute of Cotton Research & Technology, Karachi for the lint samples collected by PICR&T during the Quality Survey of Ginning factories from Punjab & Sindh were analysed at Fibre Technology Section to publish a comprehensive report entitled "Quality Survey of Pakistan Cottons" which reflect a true picture of commercially grown cotton at different locations and this report is fruitful for cotton Breeders, Ginners, Spinners & exporters. The detail of the samples tested is given in Table 8.1.

Table 8.1 Number of Samples Tested for Various Fibre Characteristics

| Source                         | Fibre  | Micro-      | Fibre St            | rength | Color | Total  |
|--------------------------------|--------|-------------|---------------------|--------|-------|--------|
|                                | Length | naire       |                     | Ū      | grade |        |
|                                | (mm)   | (µg inch⁻¹) | g tex <sup>-1</sup> | Tppsi  |       |        |
| Breeding, CCRI, Multan         | 15224  | 15224       | 15224               | 633    |       | 46305  |
| Cytogenetics, CCRI Multan      | 11666  | 11666       | 11666               | 35     |       | 35033  |
| Agronomy, CCRI, Multan         | 478    | 478         | 478                 |        |       | 1434   |
| Fibre Technology, CCRI, Multan | 278    | 278         | 278                 |        | 200   | 1034   |
| Plant Physiology, CCRI, Multan | 80     | 80          | 80                  |        |       | 240    |
| CCRI, Sakrand                  | 1181   | 1181        | 1181                |        |       | 3543   |
| CRS, Lasbella                  | 126    | 126         | 126                 |        |       | 378    |
| CRS, Ghotki                    | 970    | 970         | 970                 |        |       | 2910   |
| CRS, M.P. Khas                 | 152    | 152         | 152                 |        |       | 456    |
| CRS, D.I.Khan                  | 1230   | 1230        | 1230                |        |       | 3690   |
| CRS, Sibbi                     | 103    | 103         | 103                 |        |       | 309    |
| CRS, NIA, Tandojam             | 39     | 39          | 39                  |        |       | 117    |
| Students                       | 51     | 51          | 51                  |        |       | 153    |
| Quality Survey (PICRT)         | 847    | 847         | 847                 |        | 847   | 3388   |
| Quality Survey (Punjab)        | 851    | 851         | 851                 |        | 851   | 3404   |
| Private Sector                 | 30     | 30          | 30                  |        | 1     | 91     |
| Total                          | 33306  | 33306       | 33306               | 668    | 1899  | 102485 |

03 samples received from private sectre were also spun

# 8.2 Effects of Cotton Leaf Curl Virus (CLCuD) Disease Incidence on Fibre Characteristics of Two Cotton Varieties

The objective of the experiment was to study the effects of cotton leaf curl virus disease incidence on different fibre characteristics of cotton varieties. Two cotton varieties were selected, viz., *Bt*.CIM-616 and VH-327 sown at five different sowing dates viz., 1<sup>st</sup> March 2017, 15<sup>th</sup> March 2017, 15<sup>th</sup> April 2017 and 1<sup>st</sup> May 2017. To identify the severity levels of virus disease, the technical support was provided by Plant Pathology Section of the Institute.

Table 8.2 Fibre characteristics of variety *Bt.* CIM-616 as affected by different virus severity levels

|                                 |         | 1 <sup>st</sup> Ma | rch 2017 | 7      | ,       | 15 <sup>th</sup> Mar | ch 2017 | 7     |         | 1 <sup>st</sup> Apı | ril 2017 |       |         | 15 <sup>th</sup> A | pril 2017 | 7     | 1 <sup>st</sup> May 2017 |      |        |        |       |  |
|---------------------------------|---------|--------------------|----------|--------|---------|----------------------|---------|-------|---------|---------------------|----------|-------|---------|--------------------|-----------|-------|--------------------------|------|--------|--------|-------|--|
| Characteristics                 | Healthy | Mild               | Medium   | ж<br>* | Healthy | Mild                 | Medium  | рон   | Healthy | Mild                | Medium   | рон   | Healthy | Mild               | Medium    | рон   | Healthy                  | Mild | Medium | Severe | рон   |  |
| GOT %                           | 39.6    | 39.4               | 38.8     | 0.80   | 39.2    | 38.4                 | 37.4    | 1.80  | 39.2    | 37.0                | 36.8     | 2.40  | 38.7    | 36.2               | 35.9      | 2.80  | 37.3                     | 36.4 | 35.2   | 33.9   | 3.40  |  |
| Length (mm)                     | 27.5    | 27.3               | 27.0     | 0.50   | 27.6    | 27.5                 | 26.5    | 1.10  | 27.9    | 27.8                | 27.5     | 0.40  | 28.1    | 27.8               | 27.6      | 0.50  | 27.9                     | 27.6 | 27.3   | 27.0   | 0.90  |  |
| Unif. Index %                   | 81.2    | 80.5               | 79.0     | 2.20   | 83.5    | 82.7                 | 81.5    | 2.00  | 80.6    | 79.9                | 79.4     | 1.20  | 81.9    | 81.5               | 81.5      | 0.40  | 80.1                     | 79.6 | 79.4   | 79.0   | 1.10  |  |
| Micronaire                      | 4.5     | 5.1                | 5.2      | -0.70  | 4.3     | 4.6                  | 4.8     | -0.50 | 4.3     | 5.0                 | 5.0      | -0.70 | 4.1     | 4.6                | 4.6       | -0.50 | 3.8                      | 4.1  | 4.1    | 4.6    | -0.80 |  |
| Strength (G tex <sup>-1</sup> ) | 28.9    | 28.2               | 28.2     | 0.70   | 29.7    | 28.6                 | 26.7    | 3.00  | 30.2    | 28.6                | 27.5     | 2.70  | 28.5    | 28.2               | 27.3      | 1.20  | 28.4                     | 28.0 | 28.0   | 27.6   | 0.80  |  |

Table 8.3 Fibre characteristics of variety VH-327 as affected by different virus severity levels

|                                 |         | 1 <sup>st</sup> Mar | ch 2017 |       | 15 <sup>th</sup> March 2017 |      |        |      |         | 1 <sup>st</sup> Apri | il 2017 |           | 15 <sup>th</sup> April 2017 |      |        |        |       |         | 1 <sup>st</sup> May 2017 |        |        |       |  |
|---------------------------------|---------|---------------------|---------|-------|-----------------------------|------|--------|------|---------|----------------------|---------|-----------|-----------------------------|------|--------|--------|-------|---------|--------------------------|--------|--------|-------|--|
| Characteristics                 | Healthy | Mild                | Medium  | рон   | Healthy                     | Mild | Medium | рон  | Healthy | Mild                 | Medium  | рон       | Healthy                     | Mild | Medium | Severe | рон   | Healthy | Mild                     | Medium | Severe | рон   |  |
| GOT %                           | 38.9    | 37.8                | 37.7    | 1.20  | 40.1                        | 39.3 | 38.7   | 1.40 | 37.9    | 37.5                 | 36.9    | 1.00      | 37.4                        | 36.7 | 35.8   | 35.7   | 1.70  | 37.0    | 36.5                     | 36.3   | 35.2   | 1.80  |  |
| Length (mm)                     | 27.9    | 27.0                | 26.9    | 1.00  | 27.7                        | 27.4 | 27.2   | 0.50 | 28.0    | 27.9                 | 27.6    | 0.40      | 28.1                        | 27.5 | 27.4   | 27.0   | 1.10  | 27.4    | 27.0                     | 26.7   | 26.0   | 1.40  |  |
| Unif. Index %                   | 84.2    | 82.0                | 82.1    | 2.10  | 83.8                        | 80.4 | 80.3   | 3.50 | 82.5    | 82.0                 | 81.1    | 1.40      | 82.4                        | 82.1 | 82.0   | 81.0   | 1.40  | 81.9    | 80.9                     | 80.3   | 80.0   | 1.90  |  |
| Micronaire                      | 4.3     | 4.6                 | 4.7     | -0.40 | 4.3                         | 4.5  | 4.9    | 0.60 | 4.1     | 4.2                  | 4.4     | -<br>0.30 | 4.2                         | 4.4  | 4.7    | 4.8    | -0.60 | 3.9     | 4.0                      | 4.3    | 4.6    | -0.70 |  |
| Strength (G tex <sup>-1</sup> ) | 29.7    | 29.1                | 28.5    | 1.20  | 29.3                        | 28.0 | 28.0   | 1.30 | 30.2    | 29.4                 | 28.4    | 1.80      | 31.4                        | 27.9 | 27.8   | 26.5   | 4.90  | 27.5    | 27.4                     | 26.9   | 26.5   | 1.00  |  |

<sup>\*</sup>DOH = Maximum decrease over healthy

Five healthy & five virus effects plants of each severity levels i.e., mild, medium and severe were tagged. Opened cotton bolls were picked from healthy plants and virus affected plants. The seed cotton was ginned. The lint samples were tested for various fibre characteristics. The results are presented in Tables 8.2 to 8.3 showed that how cotton leaf curl virus disease affected fibre characteristics.

Ginning out turn % was affected by CLCuD of both test varieties. The maximum decrease over healthy in GOT % was found in variety Bt.CIM-616 (3.40) at 1st May, 2017 sowing date and minimum decrease over healthy also found in same variety (0.80) at 1<sup>st</sup> March, 2017 sowing date. Fibre length was influenced by the virus disease incidence for both varieties. The maximum decrease over healthy in length was found in variety VH-327 (1.40) at 1<sup>st</sup> May, 2017 sowing date and minimum decrease over healthy in variety Bt.CIM-616 (0.40) at 1st April, 2017 sowing date. Uniformity index was also influenced by the virus disease incidence for both varieties. The maximum decrease over healthy in uniformity was found in variety VH-327 (3.50) at 15th March, 2017 sowing date and minimum decrease over healthy in variety Bt.CIM-616 (0.40) at 15th April, 2017 sowing date. Micronaire value was positively affected by CLCuD of both varieties. The maximum increase over healthy in micronaire was found in variety Bt.CIM-616 (-0.80) at 1<sup>st</sup> May, 2017 sowing date and minimum increase over healthy in variety VH-327 (-0.30) at 1<sup>st</sup> April, 2017 sowing date. Fibre strength was influenced by the virus disease incidence for both varieties. The maximum decrease over healthy in strength was found in variety VH-327 (4.90) at 15<sup>th</sup> April, 2017 sowing date and minimum decrease over healthy in variety Bt.CIM-616 (0.70) at 1<sup>st</sup> March, 2017 sowing date.

Fig. 1-4 depicts the interactive effects of virus severity levels on different fibre quality traits.

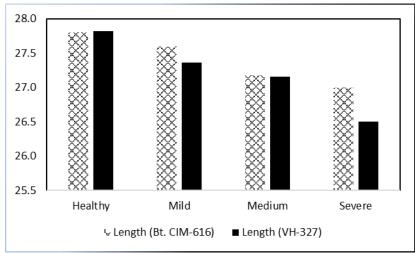



Fig. 1 Interactive effect of virus severity levels on fibre length (mm)

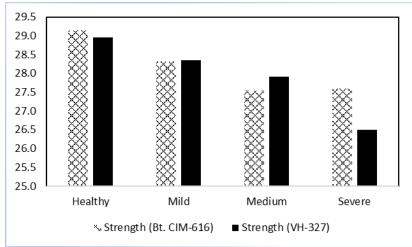



Fig. 2 Interactive effect of virus severity levels on fibre strength (g tex<sup>-1</sup>)

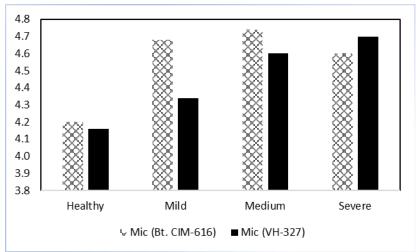



Fig. 3 Interactive effect of virus severity levels on micronaire value

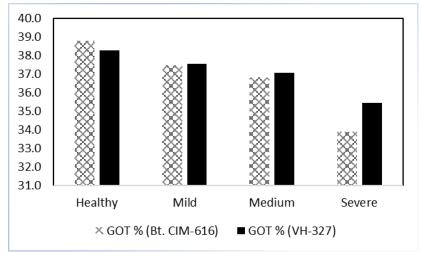



Fig. 4 Interactive effect of virus severity levels on ginning out turn (%)

# 8.3 The Effect of Different Moisture Levels on Fibre Characteristics of Cotton

The objective of the experiment was to study the effect of different moisture levels on fibre characteristics of cotton. The control of the moisture content of cotton during testing is important as the hygroscopic nature of cotton allows for many fiber properties to vary in response to the ambient environment. The ASTM standard calls for a temperature of 20±2°C and 65±2% relative humidity for testing of cotton fibre. The three cotton fibre types were selected i.e., long staple, medium staple and lower medium staple for the experiment. The 20 lint samples of each moisture level viz., 6%, 8.5% and 11% of each type were prepared and tested for various fibre characteristics. The results are presented in Table 8.4.

The findings from different moisture levels are presented in Table 8.4 revealed that there were significant differences between different moisture contents, for fibre length, fibre strength, uniformity index, degree of whiteness and degree of yellowness for each cotton type. The fibre length, uniformity and strength increased, degree of whiteness and degree of yellowness decrease with increase in moisture level for each cotton type. There is no significant effect of moisture level on micronaire value for each cotton type.

Table 8.4 Fibre characteristics as affected by different moisture contents

|                           | L       | ong Stap | Me     | edium Sta | ıple   | Lower Medium Staple |        |        |        |  |
|---------------------------|---------|----------|--------|-----------|--------|---------------------|--------|--------|--------|--|
| Moisture Level            | 6.0%    | 8.5%     | 11.0%  | 6.0%      | 8.5%   | 11.0%               | 6.0%   | 8.5%   | 11.0%  |  |
| Fibre Length (mm)         | 31.4 c  | 32.1 b   | 32.9 a | 28.5 c    | 29.4 b | 30.1 a              | 26.9 c | 27.9 b | 28.8 a |  |
| Uniformity Index (%)      | 84.5 ab | 84.2 b   | 84.7 a | 82.6 b    | 82.6 b | 83.9 a              | 81.4 c | 82.1 b | 83.1 a |  |
| Micronaire Value          | 4.3 a   | 4.3 a    | 4.3 a  | 4.1 b     | 4.2 a  | 4.2 a               | 3.9 a  | 3.8 b  | 3.9 a  |  |
| Strength (g/tex)          | 33.2 b  | 34.5 a   | 34.9 a | 30.0 c    | 31.6 b | 32.4 a              | 29.0 c | 30.2 b | 30.7 a |  |
| Degree of Whiteness (Rd)  | 70.6 a  | 69.2 b   | 66.8 c | 70.2 a    | 69.2 b | 66.3 c              | 70.7 a | 69.9 b | 67.6 c |  |
| Degree of Yellowness (+b) | 13.0 a  | 12.3 b   | 8.30 c | 13.0 a    | 12.5 b | 8.60 c              | 13.2 a | 12.6 b | 8.70 c |  |

Values with different letters in each row for each trait are significant at p<0.05%

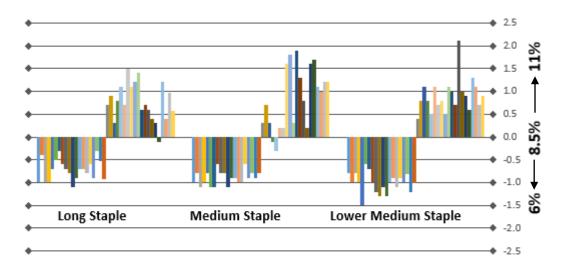



Fig. 5 Fibre Length differentiation from 8.5% moisture level

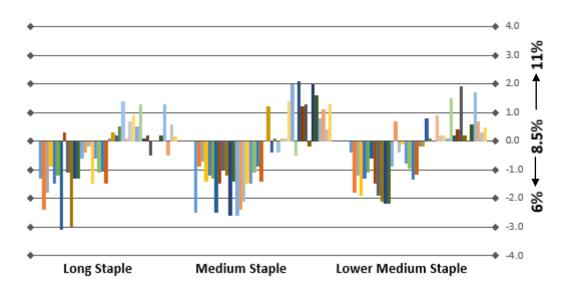



Fig. 6 Fibre strength differentiation from 8.5% moisture level

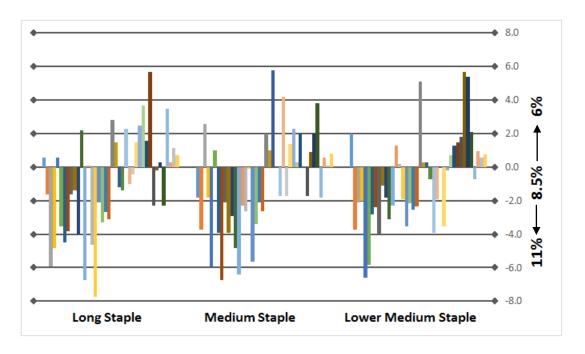



Fig. 7 Differentiation of whiteness from 8.5 % moisture level

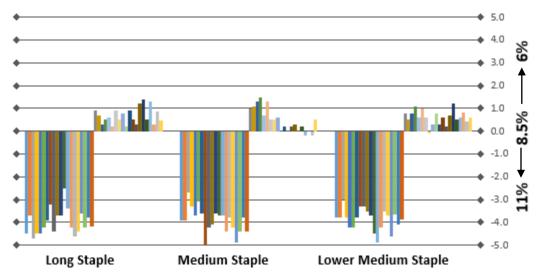



Fig. 8 Differentiation of Yellowness from 8.5 moisture level

#### 8.4 Quality Survey of Lint Samples from Ginning Factories in Punjab Province

A quality survey was conducted to examine the lint quality of ginning factories during the cotton season 2017-18. The samples were collected from different cities of Punjab province. Total 36 cities were visited and 851 samples drawn from 211 factories during survey. The quality of lint in different cities during the crop season 2017-18 is given in Table 8.5. The graphically representation of different fibre parameters is shown in fig -9 to fig-11.

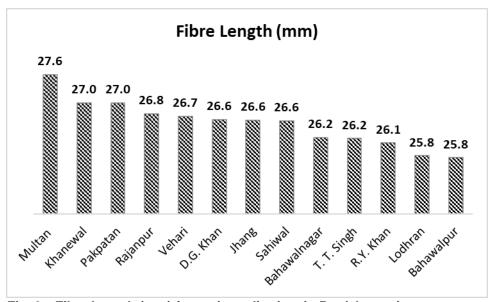



Fig. 9 Fibre Length (mm) for various districts in Punjab province.

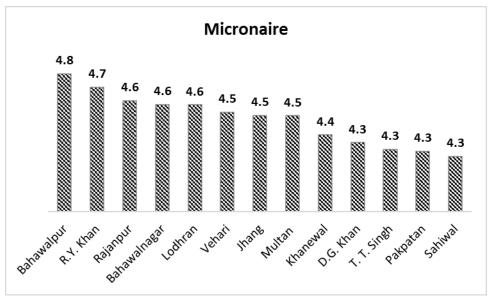



Fig. 10 Micronaire for various districts in Punjab province.

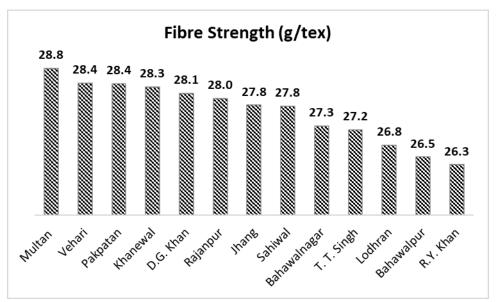



Fig. 11 Fibre Strength (g/tex) for various districts in Punjab province.

Table 8.5 Quality Survey for lint quality of various cities in Punjab province.

| тар          | le 8.5 Quali      | ity Surve             | y for lint            |                       | ibre Char    | us cities   | in Pun     | jab prov     | ince.       |
|--------------|-------------------|-----------------------|-----------------------|-----------------------|--------------|-------------|------------|--------------|-------------|
| District     | City              | Fibre                 |                       |                       |              | Elongation  |            |              |             |
| District     | City              | Length<br>(mm)        | Micronaire            | Strength<br>(g/tex)   | Index (%)    | (%)         | SFI        | Rd           | +b          |
|              | Faqeer Wali       | 26.2                  | 4.7                   | 27.2                  | 81.6         | 4.7         | 9.8        | 68.4         | 9.2         |
| Bahawalnagar | Fort Abbas        | 26.7                  | 4.7                   | 27.2                  | 82.3         | 4.5         | 8.6        | 68.8         | 9.0         |
| nac          | Haroonabad        | 26.2                  | 4.6                   | 27.0                  | 81.9         | 4.6         | 9.4        | 69.1         | 9.4         |
| ۸al          | Bahawalnagar      | 26.1                  | 4.4                   | 27.9                  | 81.5         | 4.4         | 9.9        | 69.8         | 9.9         |
| þa           | Chishtian         | 26.0                  | 4.6                   | 27.4                  | 82.1         | 4.4         | 9.2        | 70.0         | 9.9         |
| Ва           | Average           | 26.2                  | 4.6                   | 27.3                  | 81.9         | 4.5         | 9.4        | 69.2         | 9.5         |
|              | Range             | 27.9-24.7             | 4.2-5.0               | 29.8-25.2             | -            | -           | -          | -            | -           |
| _            | Bahawalpur        | 25.7                  | 4.6                   | 26.9                  | 82.9         | 5.1         | 8.3        | 66.6         | 8.9         |
| <u>a</u>     | Yazman            | 25.3                  | 4.9                   | 25.3                  | 82.2         | 4.9         | 9.5        | 64.7         | 9.0         |
| Bahawalpur   | Ahmadpur East     | 25.5                  | 4.9                   | 25.6                  | 79.5         | 5.0         | 9.3        | 64.7         | 9.2         |
| aha          | Hasilpur          | 26.6                  | 4.7                   | 27.8                  | 82.7         | 4.4         | 8.2        | 68.0         | 10.3        |
| ñ            | Average           | 25.8                  | 4.8                   | 26.5                  | 81.8         | 4.8         | 8.8        | 66.0         | 9.3         |
|              | Range<br>Khanewal | <b>27.6-23.9</b> 27.2 | <b>4.0-5.5</b><br>4.5 | <b>29.6-23.2</b> 28.7 | - 00.0       | 4.7         | 7.6        | 68.5         | 9.2         |
| =            | Kabeerwala        |                       |                       |                       | 83.6         |             |            |              |             |
| , wa         | Abdul Hakeem      | 27.2<br>26.6          | 4.4<br>4.4            | 28.4<br>28.2          | 83.4<br>82.5 | 4.7<br>4.2  | 7.1<br>8.3 | 67.7<br>67.6 | 9.3<br>10.1 |
| ane          | Mian Channu       | 26.6                  | 4.4                   | 28.2<br>27.4          | 82.5<br>82.0 | 4.2         | 9.2        | 68.4         | 9.6         |
| Khanewal     | Average           | 27.0                  | 4.3<br>4.4            | 28.3                  | 82.9         | 4.5<br>4.5  | 8.0        | 68.0         | 9.6         |
| _            | Range             | 28.3-25.0             | 4.0-4.9               | 29.6-23.2             | -            | -           | -          | -            | -           |
|              | Vehari            | 26.8                  | 4.4                   | 28.6                  | 82.8         | 4.3         | 8.0        | 68.2         | 9.6         |
|              | Buray Wala        | 26.9                  | 4.4                   | 28.2                  | 82.9         | 4.4         | 7.8        | 67.4         | 10.3        |
| Vehari       | Gaggo Mandi       | 26.6                  | 4.5                   | 28.0                  | 82.2         | 4.8         | 8.8        | 66.4         | 10.9        |
| eh<br>P      | Mailsi            | 26.6                  | 4.8                   | 27.4                  | 83.2         | 4.4         | 7.6        | 67.4         | 9.8         |
| >            | Average           | 26.7                  | 4.5                   | 28.4                  | 82.8         | 4.5         | 8.1        | 67.3         | 10.2        |
|              | Range             | 29.2-25.9             | 4.2-5.1               | 30.6-26.0             |              | -           | -          |              |             |
|              | Liaqatpur         | 26.0                  | 4.8                   | 25.7                  | 82.9         | 5.1         | 8.3        | 67.2         | 8.9         |
| a            | Khanpur           | 25.9                  | 4.8                   | 26.2                  | 82.9         | 5.1         | 8.3        | 68.0         | 9.2         |
| 춫            | R.Y. Khan         | 26.1                  | 4.7                   | 26.4                  | 83.1         | 5.3         | 7.9        | 67.8         | 9.2         |
| R.Y. Khan    | Sadiq Abad        | 26.1                  | 4.7                   | 26.5                  | 82.7         | 5.4         | 8.4        | 68.3         | 9.2         |
| ď            | Average           | 26.1                  | 4.7                   | 26.3                  | 82.9         | 5.2         | 8.2        | 67.8         | 9.1         |
|              | Range             | 28.3-23.9             | 3.6-6.0               | 29.8-23.2             | •            | -           | -          | •            |             |
| ح            | Toba Tek Singh    | 26.5                  | 4.0                   | 28.1                  | 81.9         | 4.6         | 9.2        | 69.3         | 9.6         |
| ing          | Peer Mehal        | 26.2                  | 4.3                   | 27.2                  | 81.8         | 4.5         | 9.6        | 68.5         | 10.1        |
| ς.           | Gojra             | 26.2                  | 4.3                   | 27.1                  | 81.5         | 4.5         | 9.7        | 68.8         | 9.9         |
| T. T. Singh  | Average           | 26.2                  | 4.3                   | 27.2                  | 81.7         | 4.5         | 9.5        | 68.9         | 9.8         |
|              | Range             | 27.0-25.4             | 3.8-4.8               | 28.9-25.6             | -            |             | -          | -            | -           |
| har          | Muzaffar Garh     | 26.6                  | 4.5                   | 28.3                  | 82.8         | 4.2         | 8.0        | 66.4         | 9.3         |
| ¥            | D.G. Khan         | 26.6                  | 4.2                   | 28.0                  | 83.1         | 4.5         | 8.4        | 72.0         | 9.0         |
| D.G. Khan    | Average           | 26.6                  | 4.3                   | 28.1                  | 82.9         | 4.4         | 8.2        | 69.2         | 9.2         |
|              | Range<br>Shujabad | 27.9-25.7             | 3.7-4.9               | 29.7-25.5             | 942          | 4.5         | <b>-</b>   | 69.4         | - 0.1       |
| Ë            | Jalalpur P.W      | 27.8<br>27.5          | 4.5<br>4.5            | 28.9<br>28.6          | 84.2<br>83.9 | 4.5<br>4.3  | 5.9<br>6.6 | 68.4<br>68.7 | 9.1<br>9.3  |
| Multan       | Average           | 27.5<br>27.6          | 4.5<br>4.5            | 28.8                  | 84.0         | 4.3         | 6.2        | 68.5         | 9.3         |
| Σ            | Range             | 28.4-26.8             | 4.2-4.8               | 30.8-26.3             | -            | <del></del> | -          | -            | J. <u>L</u> |
| <u> </u>     | Jampur            | 26.9                  | 4.6                   | 27.5                  | 83.6         | 4.6         | 8.1        | 67.5         | 9.3         |
| Rajanpur     | Rajanpur          | 26.6                  | 4.6                   | 27.7                  | 83.4         | 4.3         | 9.5        | 68.0         | 9.3         |
| a jar        | Average           | 26.8                  | 4.6                   | 28.0                  | 83.5         | 4.4         | 8.8        | 67.8         | 9.3         |
| ጼ            | Range             | 27.7-25.5             | 4.2-5.0               | 30.3-25.3             | -            | •           | -          | -            | -           |
| -            | Sahiwal           | 26.5                  | 4.3                   | 27.0                  | 81.3         | 4.4         | 10.0       | 69.3         | 9.8         |
| wa           | Chicha Watni      | 26.6                  | 4.3                   | 27.9                  | 81.8         | 4.3         | 9.4        | 68.9         | 9.8         |
| Sahiwal      | Average           | 26.6                  | 4.3                   | 27.8                  | 81.5         | 4.3         | 9.7        | 69.1         | 9.8         |
| 0)           | Range             | 27.6-25.5             | 4.1-4.6               | 29.8-26.1             | -            | -           | -          |              | -           |
|              | Jhang             | 26.5                  | 4.5                   | 27.5                  | 82.0         | 4.7         | 9.0        | 70.1         | 8.8         |
| Jhang        | Shorkot           | 26.7                  | 4.5                   | 28.2                  | 82.4         | 4.4         | 8.4        | 67.4         | 9.9         |
| Ĕ            | Average           | 26.6                  | 4.5                   | 27.8                  | 82.2         | 4.5         | 8.7        | 68.8         | 9.3         |
|              | Range             | 27.3-26.0             | 4.2-4.8               | 29.8-26.4             | -            | -           | -          | -            | -           |
| Lodhran      | Average           | 25.8                  | 4.6                   | 26.8                  | 83.0         | 5.1         | 8.2        | 66.7         | 9.2         |
|              | Range             | 26.7-25.0             | 4.2-5.0               | 28.8-25.5             | -            | -           | -          | -            | -           |
| Pakpatan     | Average           | 27.0                  | 4.3                   | 28.4                  | 82.7         | 4.2         | 8.0        | 68.8         | 9.7         |
|              | Range             | 27.7-26.5             | 4.0-4.5               | 29.7-27.2             | -            | -           | -          | -            | -           |
|              |                   |                       |                       |                       |              |             |            |              |             |

## 8.5 Survey of Spinning Industry of Pakistan

Survey of spinning industry was conducted to collect data regarding the utilization of cotton fibre with special reference of the cotton fibre traits and others fibers as well in industry and to focus the economics comparatives. 08 spinning units were visited in the Punjab to ascertain the cotton fibre and yarn quality being consumed by the spinning industry. The data collected are presented in Table 8.6.

Table 8.6 Survey of Spinning Industry

| i able      | 0.0                | urvey or Spinini                                | ig illuusti y                                                           |               |                                     |                                           |
|-------------|--------------------|-------------------------------------------------|-------------------------------------------------------------------------|---------------|-------------------------------------|-------------------------------------------|
| Unit<br>No. | No. of<br>Spindles | Production<br>Capacity<br>(100 lb bags<br>/day) | Types of Fibre                                                          | Average count | Counts Spun<br>from Pak<br>Cotton   | Counts Spun<br>from<br>Imported<br>Cotton |
| 1           | 32640              | 220                                             | Cotton, Viscose Rayon                                                   | 48s           | 30s, 40s, 52s                       | 60s, 80s                                  |
| 2           | 46104              | 800                                             | Cotton, Viscose Rayon,<br>Acrylic                                       | 45s           | 20s, 30s, 40s                       | 52s, 80s                                  |
| 3           | 35000              | 700                                             | Cotton, Nylon,<br>Polyester, Modal,<br>Tencel, Bamboo,<br>Viscose Rayon | 28s           | 32s                                 | 40s                                       |
| 4           | 26688              | 375                                             | Cotton, Polyester                                                       | 32s           | PC + CVC<br>(20s, 30s, 40s,<br>45s) | -                                         |
| 5           | 4000<br>rotors     | 770                                             | Cotton, Polyester                                                       | 10s           | PC (6s to 16s)                      | -                                         |
| 6           | 46000              | 1500                                            | Cotton                                                                  | 12s           | 4.5 to 20                           | 4.5 to 20                                 |
| 7           | 21168              | 275                                             | Cotton, Polyester,<br>Viscose Rayon                                     | 25            | 12 to 40                            | -                                         |
| 8           | 25000              | 500                                             | Cotton, Viscose Rayon,<br>Acrylic, Tencel                               | 28s           | 10s to 40 s                         | 68s                                       |

Moreover, comparative study was also made with regard to yarn spun and fibre quality from local viz-a-viz imported cotton. The Pakistani cotton easily fulfills the requirement for spinning of medium to fine counts. On overall average basis, there was significant difference of fibre quality of local vs imported cotton being consumed for the spinning of extra fine counts yarn. The comparative fibre analysis for cotton from different regions are presented in Table 8.7.

Table 8.7 Fibre Traits of Pakistani Cotton vs Imported Cotton

| Country      | Fibre<br>Length<br>(mm) | U.I. % | Strength<br>(g/tex) | Micronaire | Moisture<br>% | Trash % |
|--------------|-------------------------|--------|---------------------|------------|---------------|---------|
| Pakistan     | 27.4                    | 82.3   | 29.5                | 4.6        | 8.8           | 9.1     |
| Turkey       | 36.1                    | 85.6   | 38.6                | 4.3        | 6.7           | 7.6     |
| Egypt (Giza) | 32.8                    | 83.7   | 42.1                | 4.3        | 6.7           | 5.7     |
| U.S (Pima)   | 35.5                    | 86.6   | 48.6                | 4.2        | 5.1           | 3.7     |
| India        | 29.1                    | 88.8   | 29.1                | 3.9        | 7.1           | 6.2     |
| Argentina    | 28.9                    | 83.1   | 31.5                | 4.6        | 6.6           | 4.7     |
| Brazil       | 28.3                    | -      | 28.8                | 4.3        | -             | -       |

The comparative study in graphical form for each parameter is given in fig-12 to fig-14:

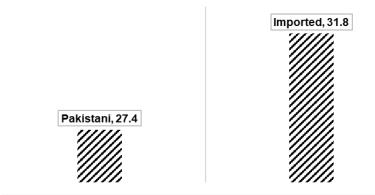



Fig. 12 Comparison of fibre length

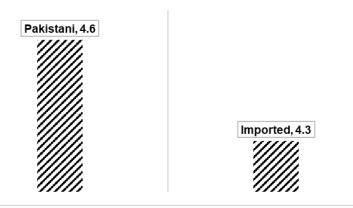



Fig. 13 comparison of Micronaire




Fig. 14 comparison of count spun

# 8.6 ICA-Bremen Cotton Round Test Program

The Fibre Technology Section participated in the ICA-Bremen Cotton Round Test Program under Faser Institute, Germany to keep the fibre testing equipment in calibrated form. Three lint samples were received during the year 2017. The lint samples were tested for different fibre characteristics. The results were submitted to the Faser Institute, Germany and fibre analysis met with other testing laboratories in the world. The results of the Institute's Laboratory and the average results of the other participating laboratories are presented in Table 8.8.

Table 8.8 ICA-Bremen Cotton Round Test Program with Faser Institute, Germany

| l able 8.8      | IOA-BIC       |                          | rogram with Faser Institute, Germany |                          |            |  |  |  |
|-----------------|---------------|--------------------------|--------------------------------------|--------------------------|------------|--|--|--|
| Date of<br>Test | Sample<br>No. | Name of Test             | Results of CCRI, Multan              | Avg. results Of all Labs | Difference |  |  |  |
|                 |               |                          | (1)                                  | (2)                      | (1-2)      |  |  |  |
| 14.03.17        | 2017/1        | Conventional Instruments |                                      |                          |            |  |  |  |
|                 |               | Micronaire               | 3.40                                 | 3.42                     | -0.02      |  |  |  |
|                 |               | Pressley Index (0")      | 8.36                                 | 8.36                     | 0.78       |  |  |  |
|                 |               | G / tex (1/8")           | 22.4                                 | 23.84                    | -1.44      |  |  |  |
|                 |               | Elongation (%)           | 5.00                                 | 6.22                     | -1.22      |  |  |  |
|                 |               | HVI-900A                 |                                      |                          |            |  |  |  |
|                 |               | U.H.M.L. (mm)            | 29.3                                 | 29.1                     | 0.20       |  |  |  |
|                 |               | Uniformity Index (%)     | 83.5                                 | 82.5                     | 1.00       |  |  |  |
|                 |               | Micronaire               | 3.40                                 | 3.42                     | -0.02      |  |  |  |
|                 |               | G/tex (1/8")             | 32.3                                 | 31.5                     | -0.80      |  |  |  |
|                 |               | Elongation (%)           | 6.00                                 | 5.85                     | 0.15       |  |  |  |
|                 |               | Rd (Reflectance)         | 71.2                                 | 71.9                     | -0.70      |  |  |  |
|                 |               | +b (Yellowness)          | 13.4                                 | 13.1                     | 0.30       |  |  |  |
|                 |               | ,                        |                                      |                          |            |  |  |  |
| 14.07.17        | 2017/2        | Conventional Instruments |                                      |                          |            |  |  |  |
|                 |               | Micronaire               | 4.40                                 | 4.33                     | 0.07       |  |  |  |
|                 |               | Pressley Index (0")      | 8.80                                 | 8.02                     | 0.78       |  |  |  |
|                 |               | G / tex (1/8")           | 19.4                                 | 21.8                     | -2.40      |  |  |  |
|                 |               | Elongation (%)           | 5.50                                 | 5.63                     | -0.13      |  |  |  |
|                 |               | HVI-900A                 |                                      |                          |            |  |  |  |
|                 |               | U.H.M.L. (mm)            | 29.4                                 | 29.1                     | 0.30       |  |  |  |
|                 |               | Uniformity Index (%)     | 83.2                                 | 82.3                     | 0.90       |  |  |  |
|                 |               | Micronaire               | 4.30                                 | 4.43                     | -0.13      |  |  |  |
|                 |               | G/tex (1/8")             | 29.1                                 | 29.2                     | -0.10      |  |  |  |
|                 |               | Elongation (%)           | 5.90                                 | 6.15                     | -0.25      |  |  |  |
|                 |               | Rd (Reflectance)         | 72.0                                 | 72.9                     | -0.90      |  |  |  |
|                 |               | +b (Yellowness)          | 13.5                                 | 13.2                     | 0.30       |  |  |  |
| 14.11.17        | 2017/3        | Conventional Instruments |                                      |                          |            |  |  |  |
|                 |               | Micronaire               | 4.20                                 | 4.20                     | 0.00       |  |  |  |
|                 |               | Pressley Index (0")      | 8.99                                 | 7.80                     | 1.19       |  |  |  |
|                 |               | G / tex (1/8")           | 18.9                                 | 20.2                     | -1.30      |  |  |  |
|                 |               | Elongation (%)           | 5.50                                 | 5.40                     | 0.10       |  |  |  |
|                 |               | HVI-900A                 | 0.00                                 | 0.10                     | 0.10       |  |  |  |
|                 |               | U.H.M.L. (mm)            | 28.8                                 | 27.95                    | 0.85       |  |  |  |
|                 |               | Uniformity Index (%)     | 82.4                                 | 81.0                     | 1.40       |  |  |  |
|                 |               | Micronaire               | 4.10                                 | 4.29                     | -0.19      |  |  |  |
|                 |               | G/tex (1/8")             | 29.8                                 | 27.0                     | 2.80       |  |  |  |
|                 |               | Elongation (%)           | 4.60                                 | 6.20                     | -1.60      |  |  |  |
|                 |               | Rd (Reflectance)         | 66.5                                 | 67.8                     | -1.30      |  |  |  |
|                 |               | +b (Yellowness)          | 11.5                                 | 10.9                     | 0.60       |  |  |  |
|                 |               | (                        | 11.0                                 | 10.0                     | 0.00       |  |  |  |

## 9. STATISTICS

The prime responsibility of this section is to support other sections of the institute in designing layout of experiments and analysis of research data. These facilities are also provided to Directorate of Research PCCC, and other stations of Pakistan Central Cotton Committee. The data of National Coordinated Varietal Trial are statistically analyzed. The rates of cotton commodities are also documented daily.

# 9.1 Statistical Analysis

Statistics section performed analysis of 241 set of experimental data during 2017-18. (Table 9.1)

| Table 0.1   | Detail | of Stat | ictical | Analyses.  |
|-------------|--------|---------|---------|------------|
| i abie 9. i | Detail | ui Siai | isucai  | Alialyses. |

| Sections     | RCBD | Split | Split-Split | F-Pool | Regression | Total |
|--------------|------|-------|-------------|--------|------------|-------|
| Agronomy     | 28   | 18    | 8           |        |            | 54    |
| Physiology   |      |       |             |        |            |       |
| Breeding     | 30   |       |             | 18     |            | 48    |
| Cytogenetics | 5    |       |             |        |            | 5     |
| Pathology    |      |       |             |        |            |       |
| Entomology   | 30   | 16    | 11          |        | 3          | 60    |
| Fiber        | 12   |       |             |        | 6          | 18    |
| NCVT         | 56   |       |             |        |            | 56    |
| Total        | 161  | 34    | 19          | 18     | 9          | 241   |

# 9.2 Prices of Seedcotton and its Components

Daily Spot Rates of Cotton (lint) were documented. The average weekly price for Base Grade cotton per 40 kg for the four cotton seasons i.e. 2014-15, 2015-16, 2016-17 and 2017-18 exclusive of upcountry charges are shown in **Fig 9.1**.

Rates of Seedcotton, Cottonseed, Cottonseed Cake, Cottonseed Oil and Cotton Lint were collected from Market Committee Multan. The Prices are provided for Rs per 40kg, temporal trend of rates for four years on weekly basis is illustrated in **Fig. 9.2**.

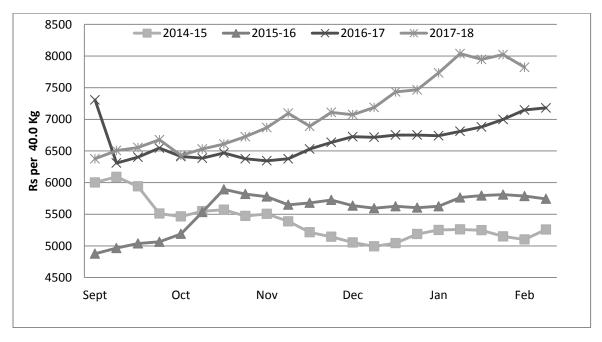
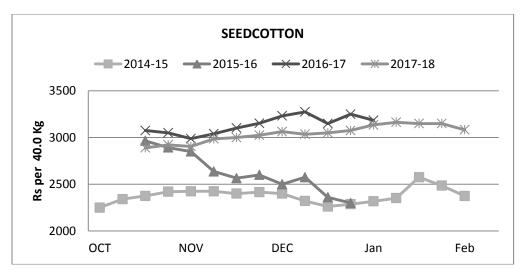
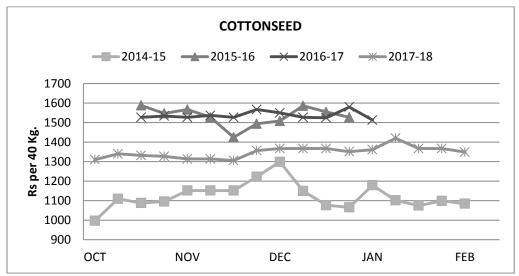
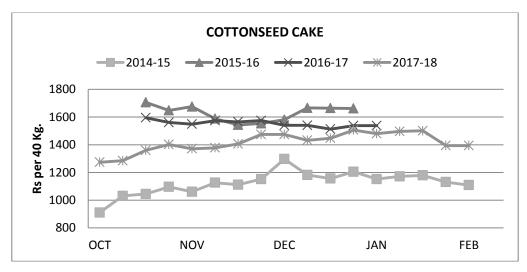
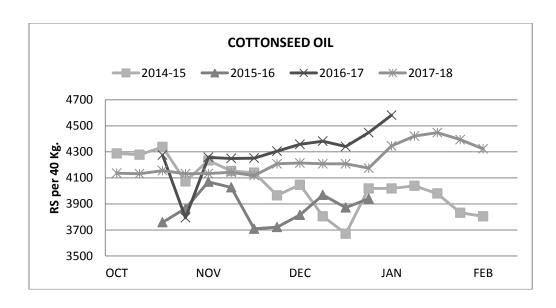







Figure 9.1: Weekly Average Spot Rates of Lint announced by Karachi Cotton Association during Cotton Seasons 2014-15, 2015-16, 2016-17 and 2017-18.









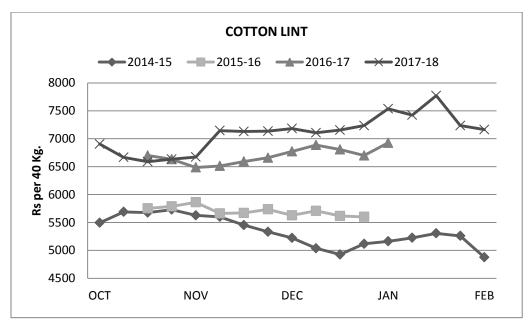



Figure 9.2: Weekly Average Rates (Rs /40Kg.) of Seed Cotton, Cotton Seed, Cotton Seed Cake, Cotton Seed Oil and Cotton Lint of Multan Market during 2014-15, 2015-16, 2016-17 and 2017-18.

## VII. RECOMMENDATIONS

Unlike other countries, cotton crop in Pakistan faces a number of challenges such as weather adversaries including higher (day & night) temperatures, irregular rainfall pattern, squeezing canal irrigation water supplies, availability of water at sowing time and peak demand period, non-judicial use of crop inputs (irrigation, fertilizer, pesticide etc.), deteriorating soil health (salts, fertility problems) rising cost of inputs resulting in un-economical crop yields, insect-pest complex (whitefly, jassid, thrips, dusky & red cotton bugs etc), diseases (CLCUD, stem & twig blight) and fluctuating produce prices. In addition, the Bt cotton has now become vulnerable to Pink Bollworm infestation which not only increases cost of production through additional use of pesticides but also limit crop yield. To ensure sustainable crop productivity along with economic returns for the farmers, concerted efforts need to be carried out at all levels involving the cotton sector stakeholders through public and private partnership approach. Based on the research work conducted by the scientists of the Institute, all the way through, following recommendations are made to dilute cotton production problems and getting maximum yield from the available resources.

#### **SOIL SELECTION AND ITS PREPARATION**

- Select best piece of land available for cotton cultivation.
- Farm machinery be optimized and in ready condition for efficient and timely operations.
- Where plant growth is restricted and downward penetration of water in the soil is slow, chiseling/ripping or deep ploughing should be done.

### **IMPROVEMENT OF SOIL HEALTH**

- Improvement and maintenance of soil physical condition ensures better soil productivity. Therefore, green manuring/farm yard manures should be incorporated one month before sowing to improve the physical condition of the soil. Among green manure crops, berseem is the best choice. Green manuring crops should be buried into the soil at tender stage 3-4 weeks ahead of cotton planting for timely decomposition and soil conditioning. For rapid decomposition of buried green matter apply ½ bag urea followed by irrigation.
- After the use of combine harvester, tradition of burning wheat straw is not beneficial. It must be incorporated into the soil which improves the physical properties and organic matter content of soil. Disc harrow instead of rotavator followed by irrigation along with ½ bag urea per acre must be used.
- Cure and preserve the farmyard manure properly in pits. Donot keep in heaps in the open sky.
- Reclamation of saline-sodic soils is accomplished by incorporating recommended quantity of gypsum into the soil followed by 2-3 heavy irrigations. This should be followed by green manuring to restore soil fertility.
- Chiseling after 2-3 years should be practiced in order to break the hard and plough pan to improve root growth and soil health.

#### **PLANTING**

- In problem soils (saline, alkaline, clayey and lands with salt patches of varying sizes) planting on bed-furrow is better than drill planting.
- Bed-furrow planting ensures better plant population. It saves 32% irrigation water over conventional planting (flat cultivation). It also saves the crop from the damages of untimely and heavy rains. Apply second irrigation after sowing on bed-furrow to ensure better seedling emergence and growth. Afterwards, apply irrigation as per need of the crop. Weeds are the major problems in bed-furrow planting, therefore, use pre-emergence herbicides to control weeds.
- To sustain the good physical soil conditions, always cultivate the fields in 'wattar' condition (workable condition) and never cultivate in dry condition.
- Level the fields properly for uniform and economized application of irrigation water.

- Apply ½ bag of urea at the time of land preparation for efficient and accelerated decomposition of previous crop residues because white-ant problem may increase and damage plant population if plant residues are not properly decomposed.
- Apply single 'rouni' on well-leveled fields for flat (conventional) planting due to scarcity of canal water.
- After wheat harvesting, apply one heavy irrigation for land and seedbed preparation simultaneously for conventional as well as bed-furrow cotton planting to avoid possible delay in planting as early planting after wheat produces better yields.

# Recommendation of cotton varieties for general cultivation

• Recommendation of *Bt.* & Non *Bt* cotton varieties for general cultivation in core and non-core cotton of the Punjab

| Bt Varieties                                        | Non-Bt Varieties                     |
|-----------------------------------------------------|--------------------------------------|
| Bt.CIM-598, Bt.CIM-599, Bt.CIM-602, Bt. Cyto-177,   | CIM-620, Cyto-124, CIM-496, CIM-506, |
| Bt. Cyto-178, Bt.CIM-600, Bt.cyto-179, IR-3701, IR- | CIM-554, CIM-573, NIAB-777, NIAB-    |
| 1524, IR-NIAB-824, FH-118, FH-142, MNH-886, VH-     | Kiran, NIAB-112, FH-942, MNH-786,    |
| 259, IUB-222, BH-178, IUB-2013 Tarzan-1, Tarzan-2,  | CRSM-38, SLH-317, BH-187, NIBGE-     |
| Sitara-008, Sitara-11M, A-555, Saiban-201.          | 115, NIAB-852, NIAB-846, GS-1,       |

- Always purchase 10% more cotton seed than required for re-planting in case of any damage to planting or lower germination.
- While cultivating Bt varieties, always plant 10-20% area with Non-Bt cotton varieties, as refuge crop, to avoid development of resistance in insects.
- Always use delinted seed. One litre concentrated commercial sulphuric acid is sufficient for delinting 10 kg fuzzy cotton seed. Wash thoroughly and dry the seed after delinting under the sunlight and not under shade. Always store cotton seed in gunny bags or cloth bags in such a way that air could pass across the bags from bottom to top. Do not store cotton seed in plastic bags.
- Check seed germination before planting. Use delinted seed @ 6-8 kg/acre with 80 percent germination for flat planting. Adjust seed rate according to germination percentage.
- Ensure that seed drill is in perfect condition and will drop the seed uniformly at appropriate depth for perfect emergence of cotton seedlings.
- Optimum sowing time for Southern Punjab is from 15<sup>th</sup> April to 31<sup>st</sup> May. The yield decreases drastically in June planting. Planting up to May 15<sup>th</sup> should be preferred. It gives better yield than late planting.
- Ensure 23,000-25,000 plants per acre for obtaining potential yield.

#### **THINNING**

- Thinning should be completed after dry hoeing and before first irrigation in flat planting (conventional) by allowing 9-12" plant to plant distance within the lines to obtain 23000-24000 plants per acre. On bed-furrow planting, thinning should be completed when plants are 10cm (4") in height. Remove weak or virus affected plants, if any, while thinning.
- A uniform early good crop stand ensures profitable cotton production.

### **WEED CONTROL**

- The first 40-70 days after sowing are crucial and growth of weeds is faster than cotton plant, therefore, all possible measures should be adopted to control weeds.
- Use of pre-emergence herbicides save the crop from early weed infestation when the crop does not permit mechanical hoeing operations.
- S-Metalacholar 960 EC and Acetachlor 50EC should not be incorporated in the soil at sowing time. They cause mortality of cotton seedlings during germination. These herbicides are used

- on bed-furrow planting as surface application within 24 hours of sowing/ irrigation on moist soil.
- Pendimathelin 330 EC can be used as pre-emergence herbicide in flat planting at seed bed preparation by incorporating into soil at 5 cm depth.
- Pendimathelin 330 EC can be used in bed-furrow planting in dry condition before sowing.
- Glyphosate 490 G/L @ 4.7 lit ha<sup>-1</sup> can be used as post-emergence weedicide provided the cotton plants are protected with shield.
- Grasses especially "Swanki" and "Madhana" at 3 to 4 leaf stage can be controlled by spraying Haloxifop @ 400ml/ac as post-emergence without protecting the cotton plants. Haloxifop can be used more than one time at any growth stage of cotton plant. No phytotoxicity was observed on crop by the spray of said herbicide.
- In flat planting, interculturing is very effective for weed eradication at early stage. After every shower of rain, and irrigation when the fields attain 'wattar' conditions (workable condition) hoeing should be done and this practice should be continued as long as the crop permits. After every interculturing, weeds which could not be eradicated by interculturing must be removed manually and the crop should be earthed up during the last interculturing operation

### **IRRIGATION**

- To flat (conventional) planting, apply first irrigation 30-40 days after sowing keeping in view the variety, soil type, crop and weather conditions. Subsequent irrigation should be applied according to crop need. There should be no water stress to the crop from 1<sup>st</sup> August to end of September. Apply that quantity of irrigation water which should be absorbed by the soil within 24 hours. Water standing in field even after 24 hours causes shedding of the fruit. Be sure that white flower should not appear at the top of the plant which is an indication of water stress to the crop especially before the month of September.
- In bed-furrow planting, after the application of irrigation for germination subsequent irrigation should be given at 8-10 days interval.
- Last irrigation should be given by 1<sup>st</sup> week of October to avoid delay in crop maturity and late season pest attack.
- In case of excessive vegetative growth, mepiquat chloride @ 400 ml per acre in 3-4 split doses (if needed) during the months of July and August may be used to regulate the plant growth so that plant should start bearing the fruit.

#### **FERTILIZER**

- Fertilizers should be used on the basis of soil test reports. For the soils showing available phosphorus less than 10 ppm, use 100-150 kg P<sub>2</sub>O<sub>5</sub> per hectare at the time of planting. If possible, mixing of phosphate fertilizer with farmyard manure in 1:2 ratio improves its efficiency. Use 50 kg K<sub>2</sub>O per hectare at planting, to soils showing available potassium less than 125 mg kg<sup>-1</sup> soil. Cotton-wheat is the major cropping pattern in the cotton area. Farmers should also use recommended levels of phosphorus and potassium fertilizers for wheat crop.
- In normal season planting, 150-200 kg N per hectare should be applied in split doses and fertilizer application should be completed by the time the crop makes canopy or by mid-August. Excessive use of nitrogen does not improve the yield but attracts the pests, delays the crop maturity and adds up cost of production.
- To improve the efficiency of phosphorus and potassium fertilizers, these may be applied in split doses. Band placement or fertigation of phosphorus in splits is more efficient than the broadcast at time of sowing.
- The crop showing deficiency of nitrogen late in the season can be sprayed in morning/evening with 3% urea solution (3 kg urea per 100 litre water) but it should not be mixed in the insecticide spray.
- Fertigation (fertilizer solution dripping into irrigation water) of nitrogenous fertilizer is also a useful method to apply nitrogen during the cropping season but its efficacy is more in leveled fields.

- The adverse effects of water shortage in cotton crop may be minimized by the application of phosphorus and potassium fertilizers.
- Gypsum as a source of sulphur may be added @ 50-100 kg per hectare in light textured and saline-sodic soils to correct sulphur deficiency syndrome.
- Three-four foliar sprays of boron and zinc @ 0.05% solution [(250g zinc sulphate with 21% Zn, 300g boric acid)/ per 100 litre water] should be done to improve fruiting.
- Mixing of 2% urea in the spray tank along with B and Zn nutrients enhances the efficacy of foliar spray.
- Potassium application through foliar sprays of 2% KNO<sub>3</sub> or K<sub>2</sub>SO<sub>4</sub> (soluble potash) solution improves yield over non-sprayed crop and minimizes the adverse effects of biotic and abiotic stresses.
- Half of the recommended dose of NPK fertilizers i.e. 75N+25P<sub>2</sub>O<sub>5</sub>+25K<sub>2</sub>O kg ha<sup>-1</sup> is as effective as recommended dose (150N+50P<sub>2</sub>O<sub>5</sub>+50K<sub>2</sub>O kg ha<sup>-1</sup>) when applied in conjunction with poultry broiler litter.
- Seed priming and subsequent foliar sprays of amino acid proline @ 0.1% increases cotton health and production. The efficiency of proline is further increased by addition of B & Zn in foliar sprays.

#### FRUIT SHEDDING

- Fruit shedding results either due to natural adversaries like high temperature coupled with high relative humidity, cloudiness, and intermittent rains or due to insufficient nutrition, excessive or shortage of water and pest attack.
- Take care of nutritional deficiency, irrigation, pests and don't worry about natural shedding.

### **PLANT PROTECTION**

- Keeping in view the losing efficacy of Bt cotton against pink bollworm, farmers are advised to plant cotton not before the 1<sup>st</sup> April.
- Always use seed delinted with sulphuric acid to avoid carryover of pink bollworm residing in double seed
- Seed treatment with insecticide ensures better crop growth and saves it from sucking pests at early stage.
- Initiation of insecticidal spray should be delayed as long as crop tolerates pests so that predators and parasites could play their role to suppress the pest population.
- Pyrethroids or their combinations should be avoided at early stage of the crop.
- Pesticides application should be on the pest scouting basis at the following economic threshold levels (ETL).
- Insect growth regulators (IGRs) are most effective against whitefly at immature stages (whitefly nymphs).
- ◆ Leftover bolls are the main source of pink bollworm for the next cotton crop. Therefore, the cotton field should be grazed after picking to reduce the number of left over bolls. It is better if the cotton sticks are shredded and incorporated into the soil which will improve the physical condition of the soil. In case the cotton sticks are to be kept for fuel purpose, these should be kept in bundles and top portion should be directed towards sun and should be used by mid-February.
- Spray machines must be perfectly in order and properly calibrated. Use hollow cone nozzles with uniform flow rate, fine mist and keep the nozzle at 1.5 to 2 feet height from the plant canopy to ensure better coverage of the crop.
- Use right dose of right insecticide at appropriate time with clean water for better results. Spray in the morning or late in the afternoon. Do not spray when rain is expected. If the rain has affected spray application, it should be repeated. Pest scouting should also be done after 3-4 days of spray to assess efficacy of the pesticide.

#### **Economic Threshold Levels of Different Pests**

| Name of insects   | Economic threshold levels                            |
|-------------------|------------------------------------------------------|
| Jassid            | 1-2 adults/nymphs per leaf                           |
| Whitefly          | 5 adults/nymphs or both per leaf                     |
| Thrips            | 8-10 adults/nymphs per leaf                          |
| Spotted bollworm  | 3 larvae/25 plants                                   |
| Pink bollworm     | 5 % bolls damage                                     |
| American bollworm | 5 brown eggs or 3 larvae or collectively 5/25 plants |
| Armyworm          | Localized chemical treatment                         |

# **CONTROL OF DISEASES**

- The seed should be treated with fungicides for seed rot and seedling diseases during early planting.
- Previous year's cotton stubs should be removed from the fields. The reason being that new sprout from diseased stubs is the source of Cotton Leaf Curl Virus (CLCuD) transmission to the newly planted crop.
- Always plant more than one virus resistant/tolerant variety to create genetic barrier.
- Use healthy and delinted seed.
- Avoid the late planting of cotton to minimize the CLCuD incidence.
- The seed should also be treated with systemic insecticide to protect the crop against whitefly which is the vector of CLCuV.
- Whitefly is the vector of CLCuD. It should be managed and controlled at economic threshold level.
- Reduce the whitefly population during mid-June to end-August and other pests to manage CLCuD.
- The diseased and weak seedlings should be removed at thinning stage and buried.
- Weeds in and around cotton fields, around water channels and field bunds should be eradicated. Reduce the whitefly population during mid-June to end of August and other pests to manage CLCuD.
- Judicious use of fertilizer and irrigation helps in the management of CLCuD.
- Application of fertilizer and irrigation should be given in accordance with recommendations.
   Excessive use of these inputs increases the incidence of boll rot of cotton.

### **PICKING**

- Seed cotton on the plant is a precious silver fiber. Maintaining its quality during picking, storing and transportation from the field or from store to the ginning factories is helpful to get quality price.
- Pick seed cotton when 60-70% bolls are opened. Avoid picking under adverse weather conditions when the sky is cloudy or rain is expected. After rain, pick seed cotton when it is dry.
- Do not start picking early in the morning when there is dew on the crop. Let the dew dry and then start picking.
- Start picking from the bottom of the plant and go upward to the top. Pick well opened and fluffy bolls. Seed cotton should be free from weeds and crop trash.
- Use cotton cloth bags for transportation. Do not use plastic or gunny bags.
- Do not keep picked cotton on moist soils in the field.
- Store seed cotton in ventilated stores in heaps of pyramid shape for proper aeration. The floor of the store should be of concrete and free from moisture.
- Moisture content in the seed cotton should be less than 12% otherwise the seed cotton will be heated in the stores. This will deteriorate lint as well as cotton seed quality.

#### VIII. PUBLICATIONS

# a) International

- 1. Tariq, M., A. Yasmeen, S. Ahmad, N. Hussain, M.N. Afzal and M. Hasanuzzaman. 2017. Shedding of fruiting structures in cotton: factors, compensation and prevention. Trop. Subtrop. Agroecosys., 20: 251–262.
- 2. Afzal, M.N., Hameed, R.A. and S. Anjum. 2017. Effect of Glyphosat and Paraquat Herbicides on Weed Control and Productivity of Cotton. Cercetari Agronomice in Moldova, 2:51-56.
- 3. Afzal, M.N., Hameed, R.A. and S. Anjum. 2017. Cotton yield and yield components can be maximized by irrigation intervals and chiseling in sandy loam soils. ARPN J. Agric. Biol. Sci., 226-229.
- 4. Afzal, M.N., Hameed, R.A. and S. Anjum. 2017. Effect of pre-emergence weedicides on weed control, yield and yield components in cotton on sandy loam soil. Int. J. Sci. Eng. Res.., 714-720.
- 5. Khan. M. I, H. A. Haq, Kalim Ullah, Muhammad Arshad and A. Majid. 2017. Genetic diversity and correlation studies for Cotton Leaf Curl Disease (CLCuD), fiber & yield related attributes in exotic lines of Gossypium arboreum L. American J. Pl. Sci. Vol., 8. 615-624 http://www.scirp.org/journal/ajps ISSN.
- Adem Bardak, M. Said Fidan, Elif Daggecen, Khezir hayat, Halil Tekerek, Sadettin Celik, Done Parlak. 2017. Association mapping for gossypol contents in cotton. KSU J. Nat. Sci., (20):236-240, 2017.
- 7. Sadettin Celik, Adem Bardak, Oktay Erdogan, Done Parlak, Rıdvan Ucar, Halil Tekerek, Alican Sever, Khizer Hayat. 2017. Determination of the response of some cotton varieties to verticillium wilt disease caused by Verticillium dahliae Kleb. Turkish Journal of Agriculture Food Science and Technology, 5(12): 1488-1492.
- 8. Saeed, R., Razaq, M., Abbas, N., Jan, M. and Naveed, M., 2017. Toxicity and resistance of the cotton leaf hopper, Amrasca devastans (Distant) to neonicotinoid insecticides in Punjab, Pakistan. Crop Protection. 93: 143-147.

### b) National

- Muhammad Zahir Ahsan, M. I. Khan, Hidayatullah Bhutto, Rehana Anjum, Muhammad Saffar Majidano, Saira Bano, Abdul Wahab Soomro, Faiz Hussain Panhwar, Abdul Razzaque Channa & Tassawar Hussain Malik. 2017. Registration of 'CRIS-129', an Early-Maturing, Heat-Tolerant, and High-Yielding Cotton Cultivar. Journal of Plant Registrations, USA. Vol. 11 No. 3, p. 222-227
- 2. Kalimullah, M. I. Khan, Z. Mahmood, T. Iqbal, S. Muhammad, H. A. Haq, A. Ahmad, S. Hussain. 2017. Response of Yield and Related Attributes of Upland Cotton to Weather Variables. American Journal of Plant Sciences, V.08. Pp: 1711-1720. http://www.scirp.org/journal/ajps.
- 3. Khan. M. I, Khadim Hussain, Muhammad Akbar & Hafiz Abdul Haq. 2017. Evolution of Cotton (*Gossypium hirsutum* L.) Variety Bt.CIM-598 Equipped with Wider Adaptability Traits, CLCuV Tolerant and Desirable Fibre Traits. Jour.Pl. Agric. & Basic Sci. Vol. 28.PP:2518-4210. http://www.jabsjournal.com.
- 4. Haq. H.A., N.U. Khan, H. Rehman, A. Latif, Z. Bibi, S. Gul, H. Raza, K. Ullah, S. Muhammad & S. Shah. 2017. Planting time effect of wheat penology & Yield Traits through genotypes by environment interaction. J. Animal & Plant Sciences. Vol:17. Issues-03: 882-893.
- 5. Kalimullah, M.I. Khan, Rehmatullah, H.A. Haq, S. Muhammad, A. Nawaz & S. Malik. 2017. Genetic Diversity & Association analysis in Upland Cotton cultivars. Journal Natural Sciences Research. Vol. 07 (23): 66-71.
- 6. Khalilullah, S., A.W. Soomro, R. Anjum and M.W. Sanjrani. 2017. Screening of exotic cotton germplasms against CLCuV and yield at the environmental conditions of Sakrand, Sindh INT. J. BIOL. BIOTECH., 14 (4): 575-580.

- 7. Ahsan, M.Z., M.I. Khan, H. Bhutto, R. Anjum, M.S. Majidano, S. Bano, A.W. Soomro, F.H. Panhwar, A.R. Channa and T.H. Malik. 2017. Registration of 'CRIS-129', an early-maturing, heat-tolerant, and high-yielding cotton cultivar. Journal of Plant Registrations 11(3):222-227.
- 8. Baloch S.K., M. A. Bhutto, R. Anjum, G.S. Nizamani, A. Y. Bughio, I.A. Khan, N.S. Soomro, K. Baloch, A. A. Rajper, A. A.Kaleri and R. R. Kaleri. 2018. Evaluation of genetic variability in the regenerated population of sugarcane. Pure and Applied Biology. http://dx.doi.org/10.19045/bspab.2018.70004.
- 9. Kalim Ullah, Muhammad Idrees Khan, Zahid Mahmood, Hafiz Abdul Haq, Aftab Ahmad, Sabahat Hussain. 2017. Response of Yield and Related Attributes of Upland Cotton to Weather Variables American Journal of Plant Sciences 01/2017; 08(07):1711-1720.
- 10. D. Iqbal, A. Farooq, M. I. Sarwar, K. Hussain, M. A. Mian, A. Hussain, K. Ahmad. 2017. Fibre traits analysis for different planting times under diverse incidence levels of cotton leaf curl disease. Sindh Univ. Res. Jour. (Science. Scr) Vol 49 (004) 679-684.

## c) Proceedings International Seminars

- 1. Afzal M. N., M. Tariq and M. Ahmed. 2017. Cotton leaf curl virus disease management in transgenic cotton through planting time and cultivars selection published in 6<sup>th</sup> Int. Conference of Pakistan Phyto-pathological Society "Plant Health for Sustainable Agriculture, A focused approach for food security under changing climate" from 20-11-2017 to 22-11-2017, organized by Department of Plant Pathology, Bahaudin Zakariya University and Central Cotton Research Institute, Multan. PP. 158
- 2. Tariq, M., M. N. Afzal and M. Ahmed. 2017. Impact of elevated temperature in climate change scenario on cotton and management consideration published in 6<sup>th</sup> Int. Conference of Pakistan Phyto-pathological Society "Plant Health for Sustainable Agriculture, a focused approach for food security under changing climate" from 20-11-2017 to 22-11-2017, organized by Department of Plant Pathology, Bahaudin Zakariya University and Central Cotton Research Institute, Multan. PP 35
- 3. Mubeen K., M. N. Afzal, M. Tariq and M. Ahmed. 2017. Sowing dates influence cotton leaf curl disease (CLCuD) incidence and productivity of cotton cultivars published in "Sino-Pak International Conference on Innovation in Cotton Breeding and Biotechnology" from 22-11-2017 to 24-11-2017, organized by Muhammad Nawaz Sharif University of Agriculture, Multan. PP.51
- 4. Tariq, M., M. N. Afzal and M. Ahmed. 2017. Climate change trend of 21<sup>st</sup> century in cotton zone and adaptation through varietal development published in Int. Conference on "Tackling Climate Change through Plant Breeding" from 13-11-2017 to 15-11-2017 organized by Department of Plant Breeding, PMAS-Arid Agriculture University, Rawalpindi. PP. 22-23
- 5. Afzal M. N., M. Tariq and M. Ahmed. 2017. Lint yield and fiber quality response of cotton to nitrogen supply at varying plant densities published in 15<sup>th</sup> Nat. and 6<sup>th</sup> Int. Conference of Pakistan Botanical Society "Dynamic trends in plant sciences: Fostering environment and food security" from 09-05-2017 to 11-05-2017 organized by Pakistan Botanical Society, held at Sardar Bahadar Khan Women University, Quetta. PP. 54
- 6. Tariq, M., M. N. Afzal and M. Ahmed. 2017. Sustainable natural resource management in cotton in changing climate change scenario published in 1<sup>st</sup> Int. Conference on "Climate Change and Biodiversity (IC<sup>3</sup>B)" from 02-05-2017 to 04-05-2017, held at Cholistan Institute of Desert Studies (CIDS), The Islamia University Bahawalpur. PP. 53
- 7. Afzal M. N., M. Tariq and M. Ahmed. 2017. Alleviation of adverse effects of climate on cotton through better management practices published in 1<sup>st</sup> Int. Conference on "Climate Change and Biodiversity (IC<sup>3</sup>B)" from 02-05-2017 to 04-05-2017, held at Cholistan Institute of Desert Studies (CIDS), The Islamia University Bahawalpur. PP.47
- 8. Khezir Hayat, Adem Bardak, Halil Tekerek, Done Parlak, Sadettin Celik, Alican Sever. 2017. Genetic mapping and quantitative trait locus analysis of fiber quality traits using a multi-parent composite population in upland cotton (Gossypium hirsutum L.). International Conference on Agriculture, Forest, Food Sciences and Technologies (ICAFOF 2017 Cappadocia / Turkey.

- 9. Halil Tekerek, Adem Bardak, Khezir Hayat, Done Parlak, Alican Sever, Sadettin Celik, Oktay Erdogan. Quantitative trait analysis for verticilium wilt resistance in recombinant inbred line of cotton. International Conference on Agriculture, Forest, Food Sciences and Technologies (ICAFOF 2017 Cappadocia / Turkey.
- 10. Done Parlak, Adem Bardak, Ramazan Şadet Guvercin, Sadettin Celik, Halil Tekerek, Alican Sever, Khezir Hayat, Elif Coşkun Daggecen. 2017. The assessment of earliness related morphological characters in cotton germplasm. International Conference on Agriculture, Forest, Food Sciences and Technologies (ICAFOF 2017 Cappadocia / Turkey.
- 11. F. Ahmad and Perveen, A. 2017. Soil health implications related to Bt cotton cultivation in Southern Punjab, Pakistan. Proceedings of 6<sup>th</sup> International Conference of Pakistan Phytopathological Society "Plant Health for Sustainable Agriculture: A Focused Approach for Food Security under Changing Climate" jointly organized by BZU, Multan and CCRI Multan from November 20-22, 2017 pp 89.
- 12. Perveen, A., Ahmad, F. and Mahmood, Z. 2018. Heat tolerance in cotton cultivars: physiological and morphological aspects. Proceedings of 13<sup>th</sup> Meeting of the Inter-Regional Cooperative Research Network on cotton for Mediterranean and Middle East Regions, held at Luxor, Egypt. Feb 02-06, 2018, pp 36.

Annexure-I

Comparative Monthly Meteorological Data Recorded at CCRI, Multan during 2016 and 2017

|           | Air   | Temper | ature (º | C)   | R    | elative | Humidi | ty   |      | Average Rainfall Evapor |       |      | Soil Temperature (°C) |      |      |      |
|-----------|-------|--------|----------|------|------|---------|--------|------|------|-------------------------|-------|------|-----------------------|------|------|------|
| Month     | Minii | num    | Maxi     | mum  | Mini | mum     | Maxi   | mum  | (Km  | h <sup>-1</sup> )       | (m    | m)   | (cm day)              |      | 0 cm |      |
|           | 2016  | 2017   | 2016     | 2017 | 2016 | 2017    | 2016   | 2017 | 2016 | 2017                    | 2016  | 2017 | 2016                  | 2017 | 2016 | 2017 |
| January   | 9.9   | 8.5    | 16.4     | 17.0 | 76   | 60      | 96     | 98   | 2.6  | 6.7                     | 0.9   | 11.7 | 0.18                  | 0.16 | 12.0 | 12.4 |
| February  | 10.7  | 11.1   | 23.2     | 21.8 | 58   | 62      | 90     | 91   | 2.5  | 3.4                     | 0.1   | 11.0 | 0.31                  | 0.31 | 13.1 | 15.4 |
| March     | 17.8  | 16.6   | 26.1     | 26.9 | 70   | 58      | 84     | 79   | 4.8  | 4.3                     | 20.1  | 0.0  | 0.36                  | 0.51 | 22.2 | 21.2 |
| April     | 22.5  | 22.8   | 34.5     | 37.2 | 85   | 51      | 86     | 56   | 5.0  | 5.5                     | 13.1  | 5.7  | 0.73                  | 0.98 | 30.3 | 28.5 |
| May       | 28.5  | 28.3   | 40.2     | 39.7 | 73   | 57      | 75     | 69   | 6.5  | 6.7                     | 2.0   | 0.1  | 1.17                  | 1.12 | 38.2 | 32.6 |
| June      | 31.1  | 28.7   | 39.8     | 37.5 | 67   | 69      | 70     | 80   | 6.8  | 7.5                     | 4.0   | 45.6 | 1.11                  | 1.09 | 54.9 | 33.2 |
| July      | 29.5  | 30.0   | 36.5     | 37.3 | 70   | 67      | 75     | 79   | 6.3  | 7.2                     | 36.2  | 4.9  | 1.02                  | 1.15 | 42.3 | 35.3 |
| August    | 28.1  | 28.4   | 35.1     | 35.2 | 82   | 60      | 86     | 85   | 4.6  | 7.7                     | 109.0 | 30.0 | 1.07                  | 0.99 | 39.6 | 34.9 |
| September | 26.2  | 25.8   | 34.8     | 35.4 | 80   | 65      | 84     | 89   | 3.9  | 4.3                     | 4.0   | 10.0 | 1.17                  | 0.77 | 37.9 | 30.3 |
| October   | 20.8  | 20.3   | 33.0     | 33.7 | 62   | 66      | 75     | 89   | 2.7  | 2.4                     | 0.0   | 0.0  | 1.16                  | 0.80 | 35.6 | 25.4 |
| November  | 13.5  | 13.8   | 26.4     | 22.2 | 55   | 70      | 83     | 93   | 2.1  | 2.7                     | 0.0   | 4.2  | 0.28                  | 0.20 | 19.5 | 16.3 |
| December  | 10.7  | 8.9    | 22.2     | 20.4 | 62   | 59      | 94     | 91   | 1.8  | 2.1                     | 0.0   | 16.0 | 0.16                  | 0.22 | 14.3 | 10.1 |

**Annexure-II** List of Officers at Central Cotton Research Institute, Multan (2017-18)

| Discipline/<br>Designation | Incumbent                    | Qualification              | Effective<br>Date |
|----------------------------|------------------------------|----------------------------|-------------------|
| DIRECTORATE                |                              |                            |                   |
| Director                   | Dr. Zahid Mahmood            | M.Sc. (Hons.) Agri., Ph.D  | 01.02.17          |
| Farm Officer               | Mr. Muhammad Azam Mian       | M.Sc. (Hons.) Agri.        | 17.03.10          |
| Administrative Officer     | Mr. Zakirullah Khalidi       | B.A.                       | 20.05.14          |
| Accountant                 | Mr. Nazir Ahmad <sup>1</sup> | B. Com.                    | 11.12.00          |
| APS                        | Mr. Zahid Khan               | B.Com., M.A. (Economics)   | 02.02.14          |
| Superintendent             | Tahir Abbas Shamsi           | B.A.                       | 03.05.16          |
| Superintendent             | Nazar Abbas                  | B.A.                       | 03.05.16          |
| AGRONOMY                   |                              |                            |                   |
| SSO                        | Dr. Muhammad Naveed Afzal    | M.Sc. (Hons.) Agri., Ph.D. | 20.05.14          |
| SO                         | Dr. Muhammad Ahmad           | M.Sc. (Hons.) Agri., Ph.D. | 05.05.16          |
| SO                         | Mr. Muhammad Tariq           | M.Sc. (Hons.) Agri.        | 29.05.14          |
| BREEDING AND GEN           | IETICS                       |                            |                   |
| SSO                        | Dr. Muhammad Idrees Khan     | M.Sc.(Hons). Agri., Ph.D   | 20.05.14          |
| SO                         | Mr. Muhammad Akbar           | M.Sc. (Hons.) Agri.        | 17.03.10          |
| SO                         | Mr. Khadim Hussain           | M.Sc. (Hons.) Agri.        | 17.03.10          |
| SO                         | Hafiz Abdul Haq              | M.Sc. (Hons.) Agri.        | 14.05.14          |
| SO                         | Mr. Saeed Muhammad           | M.Sc. (Hons.) Agri.        | 16.05.14          |
| SO                         | Dr. Fazal-i-Dayam Shehzad    | M.Sc. (Hons.) Agri., Ph.D  | 15.05.14          |
| CYTOGENETICS               |                              |                            |                   |
| SSO                        | Ms Rehana Anjum**            | M.Sc. (Hons.) Agri.        | 20.05.14          |
| SO                         | Mrs. Farzana Ashraf          | M.Sc. (Hons.) Agri.        | 22.03.10          |
| SO                         | Dr. Khezir Hayat             | M.Sc. (Hons.) Agri., Ph.D. | 22.03.10          |
| SO                         | Hafiz Muhammad Imran         | M.Sc. (Hons.) Agri.        | 16.05.14          |
| SO                         | Mrs. Rashida Aslam           | M.Sc. (Hons.) Agri.        | 15.05.14          |

On ex-Pakistan leave from 20.01.16
\*\* Transferred to CCRI Sakrand

| Discipline/<br>Designation | Incumbent                      | Qualification                  | Effective<br>Date |
|----------------------------|--------------------------------|--------------------------------|-------------------|
| ENTOMOLOGY                 |                                |                                |                   |
| SO                         | Dr. Rabia Saeed                | M.Sc. (Hons.) Agri., Ph.D.     | 17.03.10          |
| SO                         | Syed Ishfaq Ali Shah²          | M.Sc. (Hons.) Agri.            | 22.03.10          |
| SO                         | Mrs. Shabana Wazir             | M.Sc. (Hons.) Agri.            | 14.05.14          |
| PLANT PATHOLOGY            | <u>'</u>                       |                                |                   |
| SSO                        | Mrs. Sabahat Hussain           | M.Sc. (Hons.) Agri.            | 20.05.14          |
| PLANT PHYSIOLOG            | Y / CHEMISTRY                  |                                |                   |
| SSO                        | Dr. Fiaz Ahmad                 | M.Sc. (Hons.) Agri. Ph.D. (UK) | 20.05.14          |
| SO                         | Mrs. Asia Parveen              | M. Phil (Biochemistry).        | 18.03.10          |
| SO                         | Mr. Noor Muhammad <sup>3</sup> | M.Sc. (Hons.) Agri.            | 15.05.14          |
| FIBRE TECHNOLOG            | <u>Y</u>                       |                                |                   |
| SO                         | Mr. Muhammad Ilyas Sarwar      | M.Sc. Fibre Technology         | 14.05.14          |
| SO                         | Mr. Danish Iqbal               | M.Sc. Fibre Technology         | 19.05.14          |
| TRANSFER OF TECH           | HNOLOGY                        |                                |                   |
| SO                         | Mr. Sajid Mahmood              | M.A. (Mass Comm.)              | 11.12.06          |
| Network Administrator      | Mr. Muhammad Naveed Arshad     | MS (Computer Science)          | 11.08.14          |
| <u>STATISTICS</u>          |                                |                                |                   |
| SO (Marketing)             | Mr. Mubashir Islam Gill        | M.B.A.                         | 08.12.06          |

<sup>&</sup>lt;sup>2</sup> Study Leave from 01.09.15, <sup>3</sup> Study Leave from 15.09.14,

**SSO**: Senior Scientific Officer **SO**: Scientific Officer **APS**: Assistant Private Secretary